You are here

Anizotropik Yükleme Koşullarında Eksenel Deformasyon İle Sıvılaşma İlişkisi

Relationship Between Axial Strain and Liquefaction under Anisotropic Loading Conditions

Journal Name:

Publication Year:

Abstract (2. Language): 
Soil liquefaction has been extensively defined via the laboratory and in-situ tests, regarding to either the generation of excess pore water pressure or the soil vertical strain reaching a particular level under isotropic and anisotropic conditions. In this study, concolidated-drained anisotropic loading conditions were applied herein to simulate the stresses under a shallow foundation at representative depths. Three different particle size of sandy soils with two different relative density conditions were adopted for the saturated drained cyclic tests. The number of cycle load (26 cycles) within a frequency of 1second was chosen depending on a constant earthquake magnitude. The variation of axial strain during the tests was monitored in order to evaluate the liquefaction behaviour of the three types of the sands. The axial strain is found to be relative density dependent. Ione sand and beach sand samples could not reach the initial liquefaction state due to dilation. Especially, the least uniform and coarsest concrete sand with 90 % relative density tends to liquefy based on the axial strain.
Abstract (Original Language): 
Zemin sıvılaşması arazi ve laboratuvar deneyleri ile ayrıntılı olarak incelenmektedir. İzotrop ve anizotrop gerilme koşullarında eksenel deformasyon ve boşluk suyu basıncı gelişimine bağlı olarak farklı sıvılaşma tanımları geliştirilmiştir. Bu çalışmada, konsolidasyonlu-drenajlı anizotropik devirsel üç eksenli deneyler üç farklı tane boyu dağılımına sahip, iki farklı bağıl yoğunlukta hazırlanan suya doygun örselenmiş kumda yapılarak, sıvılaşma davranışları incelenmiştir. Deneylerde uygulanacak gerilmeler farklı derinliklerde, yüzeyde tekil bir temel bulunacak şekilde hesaplanmıştır. Deneylerde yükleme frekansı 1 saniye (s), devir sayısı ise sabit bir deprem büyüklüğüne göre 26 olarak seçilmiştir. Üç farklı kum için eksenel düşey deformasyonun değişimi takip edilerek sıvılaşma ile ilişkilendirilmiştir. Kum örneklerinde gevşek veya sıkı durumda farklı eksenel deformasyonlar gelişmiştir. Ione kumu ve sahil kumunda sıkışma evresinde gelişen kabarmalar, sıvılaşma başlangıcına ulaşılmasını engellemiştir. En iri taneli ve uniform olmayan beton kumunda eksenel deformasyona göre % 90 izafi sıkılıkta sıvılaşma potansiyeli belirlenmiştir.
115-123

REFERENCES

References: 

Bouferra, R., Benseddiq, N., Shahrour, I., 2007.
Saturation and preloading effects on the cyclic
behavior of sand. International Journal of
Geomechanics, 7 (5), 194-202.
Castro, G., 1975. Liquefaction and cyclic mobility
of saturated sands. Journal of Geotechnical
Engineering Division, ASCE, 101 (GT6), 551-569.
Castro, G., Poulos, S.J., 1977. Factors affecting
liquefaction and cyclic mobility. Journal of
Geotechnical Engineering Division, ASCE, 103,
501-516.
Ghionna, V.N., Porcino, D., 2006. Liquefaction
resistance of undisturbed and reconstituted
samples of a natural coarse sand from undrained
cyclic triaxial tests. Journal of Geotechnical and
Geoenvironmental Engineering, 132 (2), 194-202.
Konrad, J.M., Wagg, B.T., 1993. Undrained cyclic
loading of anisotropically consolidated clayey
silts.Journal of Geotechnical Engineering, 119
(5), 929-947.
Araştırma Makalesi/ Research Article
Jeoloji Mühendisliği Dergisi 36 (2) 2012 123
Journal of Geological Engineering 36 (2) 2012
Lee, K.L., Seed, H.B., 1967. Cyclic stress conditions
causing liquefaction of sand. Journal of Soil
Mechanics and Foundations Division, ASCE,
93, 47-70.
Mohamad, R., Dobry,R., 1986. Undrained monotonic
and cyclic triaxial strength of sand. Journal of
Geotechnical Engineering, 112 (10), 941-958.
Norris, G.M., Siddharthan, R., Zafir, Z., Madhu,
R., 1995. Liquefaction and residual strength
of sands from drained triaxial tests. Journal
of Geotechnical and Geoenvironmental
Engineering, ASCE, 123 (3), 220-228.
Palmer, J., 1997. Undrained lateral compression
response from drained lateralcompression test.
University of Nevada, Reno, USA, Ph.D.Thesis,
440 p.
Seed, H.B., Lee, K.L., 1966. Liquefaction of saturated
sands during cyclic loading. Journal of Soil
Mechanics and Foundations Division, ASCE,
92, 105-113.
Seed, H.B., Mori, K., Chan, C.K., 1975. Influence of
seismic history on the liquefaction characteristics
of sands. UCB/EERC-75/25 Report, University
of California, Berkeley, CA.,33p.
Seed, H. B., Idriss, I. M., 1982. Ground Motions
and Soil Liquefaction During Earthquakes.
Earthquake Engineering Research Institute
Monograph,EERI, Oakland, CA., 134 p.
Seed, H.B., Idriss, I.M., Arango, I., 1983. Evaluation
of liquefaction potential using field performance
data. Journal of Geotechnical Engineering
Division, ASCE,109 (3), 458-482.
Tsuchida, H., 1970. Prediction and countermeasure
against the liquefaction in sand deposits. Seminar
in the Port and Harbor Research Institute,
Abstracts, 3.1 - 3.33, Japan (In Japanese).
Ulamis, K., Yang, H. J., 2010. The prediction of the
excess pore water pressure generation and the
vertical strain in different cyclic stress ratio
loadings under anisotropic undrained conditions.
GSA Annual Meeting - Denver Colorado, USA
( In DVD).
Ulamis, K., Yang, H. J., 2011. Soil permeability
related to liquefaction potential under anisotropic
cyclic triaxial test, 43rd Engineering Geology
and Geotechnical Engineering Symposium, 1
(1), 481-489.
Yang, H.J., 2005. Extension/compression test stress-strain-volume change characterization under
drained conditions. University of Nevada, Reno,
Ph.D. Thesis, 431 p.

Thank you for copying data from http://www.arastirmax.com