[1] E.S. Allman, S. Petrovic, J.A. Rhodes, and S. Sullivant. Identiability of 2-tree
mixtures for group-based models. IEEE/ACM Trans Comput Biol Bioinformatics,
8(3):710{722, 2011 http://www.ncbi.nlm.nih.gov/pubmed/20733238.
[2] E.S. Allman and J.A. Rhodes. The identiability of tree topology for phylogenetic
models, including covarion and mixture models. J. Comp. Biol., 13(5):1101{1113,
2006 http://www.ncbi.nlm.nih.gov/pubmed/16796553.
[3] Marta Casanellas and Seth Sullivant. Algebraic Statistics for Computational Biology,
chapter 16. Cambridge University Press, Cambridge, United Kingdom, 2005.
[4] J.A. Cavender and J. Felsenstein. Invariants of phylogenies in a simple case with
discrete states. J. of Class., 4:57{71, 1987.
[5] J. Draisma. A tropical approach to secant dimensions.
J. Pure Appl. Algebra, 212(2):349{363, 2008
http://www.sciencedirect.com/science/article/pii/S0022404907001429.
[6] Jan Draisma and Jochen Kuttler. On the ideals of equivariant tree models. Math.
Ann., 344(3):619{644, 2009 http://arxiv.org/abs/0712.3230.
[7] S.N. Evans and T.P. Speed. Invariants of some probability models used in phylogenetic
inference. Ann. Statist, 21(1):355{377, 1993.
[8] Luis David Garcia, Michael Stillman, and Bernd Sturmfels.
Algebraic geometry of bayesian networks. Journal
of Symbolic Computation, 39(3-4):331{355, March-April 2005
http://www.sciencedirect.com/science/article/pii/S0747717105000076.
[9] D.R. Grayson and M.E. Stillman. Macaulay2, a software system for research in
algebraic geoemetry. Available at http://www.math.uiuc.edu/Macaulay2/, 2002.
[10] J. A. Lake. A rate-independent technique for analysis of nucleaic acid sequences:
evolutionary parsimony. Molecular Biology and Evolution, 4:167{191, 1987.
[11] L. Szekely, P.L. Erdos, M.A. Steel, and D. Penny. A fourier inversion formula
for evolutionary trees. Applied Mathematics Letters, 6(2):13{17, 1993
http://www.sciencedirect.com/science/article/pii/0893965993900047.
Thank you for copying data from http://www.arastirmax.com