You are here

Tying Up Loose Strands: De ning Equations of the Strand Symmetric Model

Journal Name:

Publication Year:

Abstract (2. Language): 
The strand symmetric model is a phylogenetic model designed to re ect the symmetry inherent in the double-stranded structure of DNA. We show that the set of known phylogenetic invariants for the general strand symmetric model of the three leaf claw tree entirely de nes the ideal. This knowledge allows one to determine the vanishing ideal of the general strand symmetric model of any trivalent tree. Our proof of the main result is computational. We use the fact that the Zariski closure of the strand symmetric model is the secant variety of a toric variety to compute the dimension of the variety. We then show that the known equations generate a prime ideal of the correct dimension using elimination theory.
17
23

JEL Codes:

REFERENCES

References: 

[1] E.S. Allman, S. Petrovic, J.A. Rhodes, and S. Sullivant. Identiability of 2-tree
mixtures for group-based models. IEEE/ACM Trans Comput Biol Bioinformatics,
8(3):710{722, 2011 http://www.ncbi.nlm.nih.gov/pubmed/20733238.
[2] E.S. Allman and J.A. Rhodes. The identiability of tree topology for phylogenetic
models, including covarion and mixture models. J. Comp. Biol., 13(5):1101{1113,
2006 http://www.ncbi.nlm.nih.gov/pubmed/16796553.
[3] Marta Casanellas and Seth Sullivant. Algebraic Statistics for Computational Biology,
chapter 16. Cambridge University Press, Cambridge, United Kingdom, 2005.
[4] J.A. Cavender and J. Felsenstein. Invariants of phylogenies in a simple case with
discrete states. J. of Class., 4:57{71, 1987.
[5] J. Draisma. A tropical approach to secant dimensions.
J. Pure Appl. Algebra, 212(2):349{363, 2008
http://www.sciencedirect.com/science/article/pii/S0022404907001429.
[6] Jan Draisma and Jochen Kuttler. On the ideals of equivariant tree models. Math.
Ann., 344(3):619{644, 2009 http://arxiv.org/abs/0712.3230.
[7] S.N. Evans and T.P. Speed. Invariants of some probability models used in phylogenetic
inference. Ann. Statist, 21(1):355{377, 1993.
[8] Luis David Garcia, Michael Stillman, and Bernd Sturmfels.
Algebraic geometry of bayesian networks. Journal
of Symbolic Computation, 39(3-4):331{355, March-April 2005
http://www.sciencedirect.com/science/article/pii/S0747717105000076.
[9] D.R. Grayson and M.E. Stillman. Macaulay2, a software system for research in
algebraic geoemetry. Available at http://www.math.uiuc.edu/Macaulay2/, 2002.
[10] J. A. Lake. A rate-independent technique for analysis of nucleaic acid sequences:
evolutionary parsimony. Molecular Biology and Evolution, 4:167{191, 1987.
[11] L. Szekely, P.L. Erdos, M.A. Steel, and D. Penny. A fourier inversion formula
for evolutionary trees. Applied Mathematics Letters, 6(2):13{17, 1993
http://www.sciencedirect.com/science/article/pii/0893965993900047.

Thank you for copying data from http://www.arastirmax.com