You are here

On multivariable cumulant polynomial sequences with applications

Journal Name:

Publication Year:

Author Name
Abstract (2. Language): 
A new family of polynomials, called cumulant polynomial sequence, and its extension to the multivariate case is introduced relying on a purely symbolic combinatorial method. The coecients are cumulants, but depending on what is plugged in the indeterminates, moment sequences can be recovered as well. The main tool is a formal generalization of random sums, when a not necessarily integer-valued multivariate random index is considered. Applications are given within parameter estimations, Levy processes and random matrices and, more generally, problems involving multivariate functions. The connection between exponential models and multivariable She er polynomial sequences o ers a di erent viewpoint in employing the method. Some open problems end the paper.
72
89

REFERENCES

References: 

[1] James Ward Brown. On multivariable Sheer sequences. J. Appl. Math. Appl., 69:398{
410, 1979.
[2] Griselda Deelstra and Alexandre Petkovic. How they can jump together: multivariate
Levy processes and option pricing. Belgian Acturial Bulletin., 9:29{42, 2010.
[3] Alessandro Di Bucchianico and Daniel Loeb. Natural exponential families and umbral
calculus. Mathematical essays in honor of Gian-Carlo Rota., Birkhuser Boston, 195{
211, 1998.
[4] Elvira Di Nardo. Symbolic calculus in mathematical statistics: a review. Seminaire
Lotharingien de Combinatoire., B67: pp. 72, 2015.
[5] Elvira Di Nardo. On photon statistics parametrized by a non-central Wishart random
matrix. J. Stat. Plan. Inf., 169:1-12, 2016.
[6] Elvira Di Nardo and Domenico Senato. An umbral setting for cumulants and factorial
moments. Europ. J. Combin., 27: 394{413, 2006.
[7] Elvira Di Nardo, Giuseppe Guarino and Domenico Senato. A unifying framework for
k-statistics, polykays and their multivariate generalizations. Bernoulli., 14:440-468,
2008.
[8] Elvira Di Nardo, Giuseppe Guarino and Domenico Senato. A new algorithm for computing
the multivariate Faa di Brunos formula. Appl. Math. Comp., 217:6286{6295,
2011.
[9] Elvira Di Nardo, Giuseppe Guarino and Domenico Senato. A new algorithm for
computing the multivariate Faa di Brunos formula. (Worksheet Maple Software),
http://www.maplesoft.com/applications/view.aspx?SID=101396, 2011.
[10] Elvira Di Nardo, Peter McCullagh and Domenico Senato. Natural statistics for spectral
samples. Annals of Statistics., 41:982{1004, 2011.
[11] Philippe Flajolet and Robert Sedgewick Analytics Combinatorics. Cambridge University
Press, 2009.
REFERENCES 89
[12] Alexandru Nica and Roland Speicher Lectures on the Combinatorics of Free Probability.
London Mathematical Society Lecture Note Series., Cambridge University Press,
335, 2006.
[13] Roy Leipnik and Charles Edward Miller Pearce The multivariate Faa di Bruno formula
and multivariate Taylor expansions with explicit integral reimander term. ANZIAM
J., 48:327-341, 2007.
[14] Robert Cox Merton Option pricing when underlying stock returns are discontinuous.
J. Financ. Econ., 3:125{144, 1976.
[15] Gian-Carlo Rota. The number of partitions of a set. Amer. Math. Monthly., 71:498{
504, 1964.
[16] Bernd Sturmfels and Piotr Zwiernik. Binary cumulant varieties. Ann. Comb., 17:229-
250, 2013.
[17] Gian-Carlo Rota and Bryan Taylor. The classical umbral calculus. SIAM J. Math.
Anal. 25:694-711, 1994.
[18] Ken-iti Sato Levy processes and innitely divisible distributions. Cambridge Studies
in Advanced Mathematics., Cambridge University Press, 1999.

Thank you for copying data from http://www.arastirmax.com