[1] Saugata Basu, Richard Pollack, and Marie-Francoise Roy. Algorithms in real alge-
braic geometry, volume 10 of Algorithms and Computation in Mathematics. Springer-
Verlag, Berlin, second edition, 2006.
[2] Emmanuel J. Candes and Benjamin Recht. Exact matrix completion via convex
optimization. Found. Comput. Math., 9(6):717{772, 2009.
[3] Emmanuel J. Candes and Terence Tao. The power of convex relaxation: Near-optimal
matrix completion. IEEE Trans. Inf. Theor., 56(5):2053{2080, 2010.
[4] Nir Cohen, Charles R. Johnson, Leiba Rodman, and Hugo J. Woerdeman. Ranks of
completions of partial matrices. In The Gohberg anniversary collection, Vol. I (Cal-
gary, AB, 1988), volume 40 of Oper. Theory Adv. Appl., pages 165{185. Birkhauser,
Basel, 1989.
[5] Maryam Fazel, Haitham Hindi, and Stephen P. Boyd. A rank minimization heuristic
with application to minimum order system approximation. In Proceedings of the 2001
American Control Conference, volume 6, pages 4734{4739. IEEE, 2001.
[6] Don Hadwin, K. J. Harrison, and Josephine A.Ward. Rank-one completions of partial
matrices and completely rank-nonincreasing linear functionals. Proc. Amer. Math.
Soc., 134(8):2169{2178, 2006.
[7] Raghunandan H. Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion
from a few entries. IEEE Trans. Inf. Theor., 56(6):2980{2998, 2010.
[8] Gary King. A Solution to the Ecological Inference Problem: Reconstructing Individual
Behavior from Aggregate Data. Princeton University Press, Princeton, 1997.
[9] Franz J. Kiraly and Louis Theran. Error-minimizing estimates and universal entrywise
error bounds for low-rank matrix completion. In C.J.C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 26, pages 2364{2372. Curran Associates, Inc., 2013.
REFERENCES 21
[10] Franz J Kiraly, Louis Theran, and Ryota Tomioka. The algebraic combinatorial
approach for low-rank matrix completion. J. Mach. Learn. Res., 16:1391{1436, 2015.
[11] Kaie Kubjas, Elina Robeva, and Bernd Sturmfels. Fixed points of the EM algorithm
and nonnegative rank boundaries. Ann. Statist., 43(1):422{461, 2015.
[12] Joseph M. Landsberg. Tensors: geometry and applications, volume 128 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 2012.
[13] Jiawang Nie, Pablo A. Parrilo, and Bernd Sturmfels. Semidenite representation of
the k-ellipse. In Alicia Dickenstein, Frank-Olaf Schreyer, and Andrew J. Sommese,
editors, Algorithms in Algebraic Geometry, volume 146 of The IMA Volumes in Math-
ematics and its Applications, pages 117{132. Springer, New York, 2008.
[14] Benjamin Recht. A simpler approach to matrix completion. J. Mach. Learn. Res.,
12:3413{3430, 2011.
[15] Bernd Sturmfels and Caroline Uhler. Multivariate gaussians, semidenite matrix
completion, and convex algebraic geometry. Ann. Inst. Stat. Math., 62(4):603{638,
2010.
Thank you for copying data from http://www.arastirmax.com