You are here

MLP Sınıflandırıcısı ve EKG Özniteliklerinin Uyku Apnesi Tanısı için Optimizasyonu

Optimizing MLP Classifier and ECG Features for Sleep Apnea Detection

Journal Name:

Publication Year:

Abstract (2. Language): 
The purpose of this study is to optimize multilayer perceptron (MLP) classifier and find optimal ECG features to achieve better classification for automated sleep apnea detection. k-fold crossvalidation technique was employed for classification of apneaic events on the apnea database of the DREAMS project containing 12 whole-night Polysomnography (PSG) recordings previously examined by an expert. To achieve the best possible performance with MLP, the correlation feature selection method was utilized. The performance for apnea event diagnosis after optimization of the features and the classifier resulted almost 10% in accuracy, %7 in sensitivity and %13 in specificity.
Abstract (Original Language): 
Bu çalışmanın amacı otomatik uyku apnesi tanımlamasında daha iyi sınıflandırma sağlamak amacıyla çok katmanlı algılayıcı sınıflandırıcısı ile kullanılacak EKG özniteliklerinin optimizasyonunu gerçekleştirmektir. Uzman hekim tarafından değerlendirilmiş 12 hastanın bulunduğu DREAMS projesi veri tabanından elde edilen PSG kayıtlarındaki apne olgularının sınıflandırılmasında k-kat çapraz doğrulama algoritması kullanılmıştır. Çok katmanlı algılayıcı ile sınıflandırmada en iyi başarımı elde etmek için ilinti öznitelik seçim metodu kullanılmıştır. Apne olgularının tespitinde, sınıflandırıcı ve öznitelik optimizasyonu sonrasında doğrulukta yaklaşık %10, duyarlılıkta %7 ve kesinlikte %13 artış elde edilmiştir.
1
18

REFERENCES

References: 

[1] Murali N.S., Svatikova A., Somers V.K.: “Cardiovascular physiology and
sleep”, Frontiers in Bioscience, 2003, 8:636-652.
[2] Morgenthaler T.I., Kagramanov V., Hanak V., Decker P.A.: “Complex
sleep apnea syndrome: is it a unique clinical syndrome?”, Sleep 2006, 29 (9):
1203-9.
[3] Yilmaz B., Asyali M.H., Arikan E., Yetkin S., Ozgen F.: “Sleep stage and
obstructive apneaic epoch classification using single-lead ECG”, Biomed Eng
Online, 2010 Aug 19;9 (1): 39.
[4] Mendez M.O., Bianchi A.M., Matteucci M., Cerutti S., Penzel T.: “Sleep
apnea screening by autoregressive models from a single ECG Lead”, IEEE
Transactions Biomedical Engineering, 2009, 56(12):2838-49.
[5] Otero A., Félix P., Barrob S., Zamarrónc C.: “A structural knowledge-based
proposal for the identification and characterization of apnoea episodes”,
Applied Soft Computing, 12 (1): 516-526, 2011.
[6] Guilleminault C., Connoly S., Winkle R., Melvin K., Tilkian A. “Cyclical
Variation of the Heart Rate in Sleep Apnea Syndrome”, Lancet 1984;21:126–
131
Optimizing MLP Classifier and ECG Features for Sleep Apnea Detection
17
[7] Chazal P., Penzel T., and Heneghan C., “Automated detection of obstructive
sleep apnoea at different time scales using the electrocardiogram”,
Physiological Measurement, 2004 July; 25: 967-983.
[8] Mendez M.O., Ruini D.D., Villantrieri O.P., Matteucci M., Penzel T.,
Cerutti S., Bianchi A.M.: “Detection of sleep apnea from surface ecg based on
features extracted by an autoregressive model”, Proceedings of the 29th Annual
International Conference of the IEEE EMBS Cite Internationale, Lyon, France,
2007.
[9] Khandoker, A. H.; Palaniswami, M.; & Karmakar, C. K.; “Automated
scoring of
obstructive sleep apnea and hypopnea events using short-term
electrocardiogram
recordings”, IEEE Transactions On Information Technology In Biomedicine,
Vol. 13, No.6, ( November 2009), pp. 1057-1067, ISSN 1089-7771.
[10] Isa S., Fanany M., Jatmiko M., Murini A.: “Feature and Model Selection
on Automatic Sleep Apnea Detection Using ECG”, International Conference on
Computer Science and Information Systems, ICACSIS 2010, pp 357-362, 2010.
[11] Mendez M.O., Bianchi A.M., Matteucci M., Cerutti S., Penzel T.: “Sleep
apnea screening by autoregressive models from a single ecg lead”, IEEE
Transactions Biomedical Engineering, 56 (12), 2009, 2838-2849.
[12] Devuyst S., Dutoit D., Kerkhofs M., DREAMS apnea database,
University of MONS - TCTS Laboratory and Université Libre de Bruxelles -
CHU de Charleroi Sleep Laboratory Charleroi,
http://www.tcts.fpms.ac.be/~devuyst/Databases/DatabaseApnea/ (Accessed
Novemer 10, 2014).
Oğuz Han TİMUŞ, Erkan KIYAK
18
[13] Camm A., J, Malik M., Bigger J. T., Breithardt G., Cerutti S., Cohen R. J.,
Coumel P., Fallen E. L., Kennedy H. L., Kleiger R. E., Lombardi F., Malliani
A., Moss A. J., Rottman J.N., Schmidt G., Schwartz P. J., Singer D. H.: “Heart
rate variability-Standards of measurement, physiological interpretation, and
clinical use”, European Heart Journal, Vol 17, No3, (March 1996), pp354-381.
[14] Kaiser J.F: “Some Useful Properties of Teager's Energy Operators,
Acoustics, Speech and Signal Processing”, ICASSP-93, IEEE International
Conference, Vol3, Issue April 1993, pp149-152, ISSN 1520-6149.

Thank you for copying data from http://www.arastirmax.com