You are here

GENERALIZATION OF A UAV LOCATION AND ROUTING PROBLEM BY TIME WINDOWS

Journal Name:

Publication Year:

Author Name
Abstract (2. Language): 
In this study we extend and generalize a locating and routing problem for UAVs, with an objective of maximization of the total score collected from interest points visited. By solving the problem we determine simultaneously take-off and landing stations and visit order of interest points for each UAV. The problem is defined by an integer linear programming (ILP) formulation. An ant colony optimization approach is altered for the introduced problem. Computational experiments are performed to compare CPLEX solver and the heuristic. We observe that the heuristic performed well on the experienced instances.
Abstract (Original Language): 
Bu çalışmada İHA’lar için kullanılan, ziyaret edilen noktalardan toplanan puanları ençoklamayı amaçlayan bir yerleştirme ve rotalama problemi geliştirilerek daha genel bir problem haline getirilmiştir. Bu problemin çözümü ile her bir İHA için kalkış ve iniş istasyonları ile noktaların ziyaret sıraları eşzamanlı olarak belirlenmektedir. Problem tamsayılı doğrusal programlama modeli olarak formüle edilmiştir. Bir karınca kolonisi optimizasyon yaklaşımı problem için modifiye edilmiştir. Sayısal denemelerde CPLEX çözücüsü ile sezgisel yaklaşım karşılaştırılmış, sezgisel yaklaşımın tecrübe edilen problem örnekleri üzerinde iyi performans gösterdiği tespit edilmiştir.
67
78

REFERENCES

References: 

[1] Yakıcı E., (2016). Solving location and routing problem for UAVs,,
Computers & Industrial Engineering, in press, doi: 10.1016/j.cie.2016.10.029.
[2] Ahn J., DeWeck O., and Hoffman J., (2008). An optimization
framework for global planetary surface exploration campaigns, Journal of the
British Interplanetary Society, 61(12), pp. 487-498.
[3] Ahn J., DeWeck O., Geng Y., and Klabjan D., (2012). Column
generation based heuristics for a generalized location routing problem with
profits arising in space exploration, European Journal of Operational Research,
223(1), pp. 47-59.
[4] Drexl M., and Schneider M., (2015). A survey of variants and
extensions of the location-routing problem, European Journal of Operational
Research, 241(2), pp. 283-308.
[5] Prodhon C., and Prins C., (2014). A survey of recent research on
location-routing problems, European Journal of Operational Research, 238(1),
pp. 1-17.
[6] Stützle T., and Hoos H., (1997). Max-min ant system and local search
for the traveling salesman problem, In Evolutionary Computation, IEEE
International Conference on, pp. 309-314, IEEE.
[7] Stützle T., and Hoos H., (2000). Max-min ant system, Future generation
computer systems, 16(8), pp. 889-914.

Thank you for copying data from http://www.arastirmax.com