You are here

PATTERN RECOGNITION FROM FACE IMAGES

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
In this article, we use projected gradient descent nonnegative matrix factorization (NMF-PGD) method and make pattern recognition analysis on ORL face data set. Face recognition is one of the critical issues in our life and some security, daily activities and operations use this well known application area. NMF-PGD is a type of nonnegative matrix factorization (NMF) which defined in the literature. In the study, derived NMF-PGD definition and algorithm has been used in order to classify the ORL face images. We give the experimental results in a table and graph. According to experiments, face recognition accuracy rates have different accuracy values because of the k - lower rank value. We change k-values between 25 and 144 to see the performance of NMF-PGD. At the end, we make some analysis and comments on the recognition rates. Additionally, NMF-PGD can also be used for different kind of pattern recognition problems.
Abstract (Original Language): 
Bu makalede, iz düşüm eğimli azatlım negatif olmayan matris ayrıştırma (NMF-PGD) yöntemi kullanılmış ve ORL yüz veri kümesi üzerinde örüntü tanıma analizleri yapılmıştır. Yüz tanıma, güvenlik ve günlük aktivitelerde kullandığımız hayatımızdaki önemli ve iyi bilinen alanlardan bir tanesidir. NMF-PGD, literatürde tanımlanmış bir negatif olmayan matris ayrıştırma yöntemidir. Bu çalışmada, elde edilmiş NMF-PGD tanımı ve algoritması, ORL yüz veri imgelerini sınıflandırmak için kullanılmıştır. Deneysel analiz ve sonuçlar tablo ve grafik halinde sunulmuştur. Deneysel sonuçlara göre, yüz tanıma doğruluk oranları k-düşük rank değeri nedeniyle farklı değerlere sahip olmaktadır. k-düşük rank değerlerini 25 ve 144 arasında olacak şekilde değiştirip seçerek, NMF-PGD yönteminin performansını test ettik. Son kısımda, bu oranlar hakkında çeşitli analizler ve yorumlarda bulunduk. Ek olarak, NMF-PGD diğer çeşitli örüntü tanıma problemlerinde de kullanılabilir.
14
20

REFERENCES

References: 

[1] X. Li, J. Zhou, L. Tong, X. Yu, J. Guo, C. Zhao, Structured
Discriminative Nonnegative Matrix Factorization for Hyperspectral
Unmixing, IEEE International Conference on Image Processing, (2016), pp.
1848-1852.
[2] T. Ensari, J. Chorowski, and J. M. Zurada, “Correntropy-based
Document Clustering via Nonnegative Matrix Factorization”, in Proc. Int.
Conf. on Artificial Neural Networks, vol. 7553, (2012), pp. 347-354.
[3] T. Ensari, Character Recognition Analysis with Nonnegative Matrix
Factorization, International Journal of Computers, vol. 1, (2016), pp. 219-
222.
[4] C. Fevotte and J. Idier, “Algorithms for Nonnegative Matrix
Factorization with the â-Divergence”, Neural Computation, vol. 23, no. 9,
(2011), pp. 2421-2456.
[5] S. Choi, “Algorithms for orthogonal nonnegative matrix
factorization”, in Proc. Int. Joint Conf. on Neural Networks, Hong Kong,
(2008), pp. 1828-1832.
6] D. D. Lee and S. Seung, Learning the Parts of Objects by
Nonnegative Matrix Factorization, Nature 401, (1999), pp. 788-791.
[7] D. D. Lee and S. Seung, (2000), Algorithms for Nonnegative Matrix
Factorization, International Conference on Neural Information Processing.
[8] Alpaydın E.: Introduction to Machine Learning, The MIT Press,
USA, (2015).
[9] M. Hu, Y. Zheng, F. Ren, H. Jiang: Age estimation and gender
classification of facial images based on local directional pattern, IEEE
International Conf. on Cloud Computing and Intelligent Systems, (2014),
103-107.
[10] Wiesner V., Evers L.: Statistical data mining, University of Oxford,
(2004).
[11] T. Bissoon, S. Viriri: Gender classification using Face Recognition,
International Conference on Adaptive Science and Technology, (2013), 1-4.
Tolga ENSARİ
20
[12] W. Zhao, H. Ma, and N. Li, “A new non-negative matrix
factorization algorithm with sparseness constraints”, in Proc. the Int. Conf.
on Machine Learning and Cybernetics, (2011), pp 1449-1452.
[13] H. Liu, Z. Wu, X. Li, D. Cai, and T. S. Huang, “Constrained
nonnegative matrix factorization for image representation”, IEEE Trans. on
Pattern Analysis and Machine Intelligence, (2012), vol. 34, no. 7
[14] R. Gopalan, D. Jacobs, “Comparing and Combining Lighting
Insensitive Approaches for Face Recognition”, Journal of Computer Vision
and Image Understanding, (2010), pp 135-145, vol. 114, no. 1.
[15] S. Zafeiriou, A. Tefas, I. Buci, and I. Pitas, “Exploiting Discriminant
Information in Nonnegative Matrix Factorization with Application to
Frontal Face Verification”, IEEE Transactions on Neural Networks, (2006),
vol. 17, no. 3.
[16] D. Guillamet, J. Vitria, “Nonnegative Matrix Factorization for Face
Recognition”, Proc. of Catalonian Conference on Artificial Intelligence,
(2002).
[17] T. Feng, S. Z. Li, H. Y. Shum, H. J. Zhang, “Local Non-negative
Matrix Factorization as A Visual Representation”, Proc. of Int. Conf. on
Development and Learning, (2002).

Thank you for copying data from http://www.arastirmax.com