You are here

RÜZGAR SANTRALLERİNİ ELEKTRİK ŞEBEKE SİMÜLASYONLARINDA MODELLEME: BİR DERLEME

MODELING WIND FARMS IN POWER SYSTEM SIMULATION STUDIES: A REVIEW

Journal Name:

Publication Year:

Author Name
Abstract (2. Language): 
The penetration of wind energy in power systems increasing and has began to influence overall power system behavior. This situation has to be investigated in order to sustain reliable power system operation. However, adequate models of power system components and wind energy conversion systems are needed to use in grid investigation studies and simulations. In this study, a review is given of the modeling issues about grid with wind power.
Abstract (Original Language): 
Rüzgar enerjisinin elektrik güç sistemi içindeki katılımı hergeçen gün artmakta ve elektrik güç sisteminin tüm işletme karakterini etkilemeye başlamaktadır. Bu durum elektrik güç sisteminin güvenli işletmesinin devamının sağlanması adına araştırılmalıdır. Ancak elektrik şebekesi ile ilgili yapılacak bu çalışma ve simülasyonlar için, rüzgar enerjisi dönüşüm sistemleri ve elektrik güç sistemi elemanlarının geçerli ve yeterli modellerine ihtiyaç duyulmaktadır. Bu çalışmada; rüzgar enerjisi barındıran elektrik güç sisteminin modellenmesi hakkında yapılan çalışmalar gözden geçirilmiştir.
47
67

REFERENCES

References: 

[1] Iov, F., Hansen, A. D., Sørensen, P., & Cutululis, N. A. (2007). “Mapping of Grid Faults and
Grid Codes”, Risø-R-Report 1617(EN). Retrieved August 10, 2007, from
http://www.risoe.dtu.dk/Risoe_dk/Home/Knowledge_base/publications/VEA.aspx.
[2] EWEA-European Wind Energy Association. (2005). “Large scale integration of wind energy in
the European Power Suply”. Retrieved November 25, 2006, from
http://www.ewea.org/fileadmin/ewea_documents/documents/publications/grid...
ort.pdf.
[3] Slootweg, J. G. & Kling, W. L. (2002). “Modeling of Large Wind-farms in Power System
Simulations”, Proceedings of IEEE Power Engineering Society Summer Meeting. 503-508.
[4] Erlich, I., Winter, W., & Dittrich, A. (2006). “Advanced Grid Requirements for the Integration
of Wind Turbines into the German Transmission System” . IEEE Power Engineering Society
General Meeting, 2006.
[5] Slootweg, J.G. de Haan, S. W. H., Polinder, H., W.L. Kling. (2001), “Modeling Wind Turbines
in Power System Dynamics Simulations”, Power Engineering Society Summer Meeting, 2001.
[6] Petru, T. and Thiringer, T. (2002), “Modeling of Wind Turbines for Power System Studies”,
IEEE Transactions On Power Systems, Vol. 17, No. 4, November 2002.
[7] Slootweg, J.G., Polinder, H. and Kling, W. L. (2001), “Initialization of Wind Turbine Models in
Power System Dynamics Simulations”, Power Tech Proceedings, 2001 IEEE Porto.
[8] Hansen, A.D., Sørensen, P., Iov, F., and Blaabjerg, F. (2003), “Initialisation of Grid-Connected
Wind Turbine Models in Power-System Simulations”, Wind Engineering Volume 27, No.
1,2003, PP. 21- 38.
[9] Raiambal, K. and Chellamuthu, C., (2002), “Modeling and Simulation of Grid Connected Wind
Electric Generating System”, Proceedings of IEEE Region 10 Conference on Computers,
Communications, Control and Power Engineering.
[10] Akhmatov, V. (2006), “System Stability Of Large Wind Power Networks A Danish Study
Case”, Electrical Power and Energy Systems 28 (2006) 48–57.
[11] Bleijs, J.A.M. , (2007), “Wind Turbine Dynamic Response–Difference Between Connection to
Large Utility Network and Isolated Diesel Micro-Grid”, IET Renew. Power Gener., 2007, 1, (2),
pp. 95–106.
Modeling Wind Farms in Power System Simulation Studies: A Review
65
[12] Zhou, F., Joos, G. , Abbey, C. “Voltage Stability in Weak Connection Wind Farms”, IEEE
Power Engineering Society General Meeting, 2005.
[13] Anandavel, P., Rajambal, K., Chellamuthu, C. (2005), “Power Optimization In A Grid-
Connected Wind Energy Conversion System”, International Conference on Power Electronics
and Drives Systems, 2005.
[14] Slootweg, J. G. & Kling, W. L., “The Impact Of Large Scale Wind Power Generation On Power
System Oscillations”, Electric Power Systems Research 67 (2003) 9-20.
[15] Alanen, R., Kauhaniemi, K., Rinne, T., (2006), “Network Simulations of Variable Speed Wind
Power System with Dual Energy Storage”, Nordic Wind Power Conference, 22-23 May, 2006,
Espoo, Finland.
[16] Chen, Z., Blaabjerg, F., & Sun, T. (2004). Voltage Quality of Grid Connected Wind Turbines.
Proceedings. of the Workshop of Techniques and Equipments for Quality And Reliability of
Electrical Power, Bucharest, Romania. (11-16).
[17] Muyeen, S.M., Ali, Md.H., Takahashi,R., Murata, T., Tamura, J. Tomaki, Y. Sakahara, A. and
Sasano, E. (2007) “Comparative Study on Transient Stability Analysis of Wind Turbine
Generator System Using Different Drive Train Models”, IET Renew. Power Gener., 2007, 1, (2),
pp. 131–141
[18] Muyeen, S.M.; Takahashi, R.; Murata, T.; Tamura, J.; Ali, M.H.; Matsumura, Y.; Kuwayama,
A.; Matsumoto, T. , “Low voltage ride through capability enhancement of wind turbine
generator system during network disturbance”, IET Renew. Power Gener., 2009, Vol. 3, No. 1,
pp. 65–74.
[19] Sharma, H., Islam, S., Pryor, T., and Nayar, C.V., (2001), "Power quality issues in a wind
turbine driven induction generator and diesel hybrid autonomous grid", J. Elect. Electron. Eng.,
vol. 21, no. 1, pp.19 -25 2001
[20] Han, S.G. Yu, I.K., Park, M. (2007), “PSCAD/EMTDC-Based Simulation Of Wind Power
Generation System”, Renewable Energy 32 (2007) 105–117
[21] Arifujjaman, M. “Modeling, simulation and control of grid connected Permanent Magnet
Generator (PMG)-based small wind energy conversion system”, 2010 IEEE Electric Power and
Energy Conference (EPEC).
[22] Andersson, D., Petersson, A., Agneholm, E. and Karlsson, D.(2007) “Kriegers Flak 640 MW
Off-Shore Wind Power Grid Connection—A Real Project Case Study”, IEEE Transactions on
Energy Conversıon, Vol. 22, No. 1, March 2007.
[23] Larsson, A. Petersson, A., Ullah, N., Carlson, O. “Krieger’s Flak Wind Farm” , Nordic Wind
Power Conference, 22-23 May, 2006, Espoo, Finland.
[24] Shafiu, A., Anaya-Lara, O. Bathurst, G. and Jenkins, N. (2006), “Aggregated Wind Turbine
Models for Power System Dynamic Studies”, Wind Engineering Volume 30, No. 3, 2006.
pp.171–186
[25] Akhmatov, V. and Knudsen, H. “An Aggregate Model of a Grid-Connected, Large-Scale,
Offshore Wind Farm for Power Stability Investigations- Importance of Windmill Mechanical
System”, Electrical Power and Energy Systems 24 (2002) 709-717.
[26] Fernandez, L.M., Jurado, F., Saenz, J.R. (2008), “Aggregated Dynamic Model for Wind Farms
with Doubly Fed Induction Generator Wind Turbines”, Renewable Energy 33 (2008) 129–140.
[27] Rauma, K., Md. Hasan, K.N., Gavriluta, C. , Citro, C. (2012) “Resonance Analysis of a Wind
Power Plant with Modal Approach” IEEE International Symposium on Industrial Electronics
2012 (ISIE).
Özgür Salih MUTLU
66
[28] Sørensen, P. Cutululis, N.A., Hjerrild, J., Jensen, L., Donovan, M., Christensen, L.A.E., Madsen,
H., Vigueras-Rodríguez, A. “Power Fluctuations from Large Offshore Wind Farms”, Nordic
Wind Power Conference, 22-23 May, 2006, Espoo, Finland.
[29] Hansen, A.D., Sørensen, P. , Janosi, L. ; Bech, J. (2001), “Wind Farm Modeling for Power
Quality”, Industrial Electronics Society, 2001. IECON '01. The 27th Annual Conference of the
IEEE.
[30] Perdana, A., Uski, S., Carlson, O., & Lemström, B. (2006) Validation of Aggregate Model of
Wind Farm with Fixed-speed Wind Turbines against Measurement. Proc. Nordic Wind Power
Conference 2006, Espoo, Finland.
[31] Saniter, C., Janning, J., Bocquel, A. (2007), “Test Bench For Grid Code Simulations For Multi-
MW Wind Turbines”, 2007 IEEE European Conference on Power Electronics and Applications.
[32] Martins, M. Perdana, A., Ledesma, P., Agneholm, E., Carlson, O. (2007), “Validation Of Fixed
Speed Wind Turbine Dynamic Models With Measured Data”, Renewable Energy 32 (2007)
1301–1316.
[33] Iov, F., Hansen, A.D., Jauch, C., Sørensen, P., Blaabjerg, F., “Advanced Tools for Modeling,
Design and Optimization of Wind Turbine Systems”, Nordic Wind Power Conference, 1-2
March, 2004, Chalmers University Of Technology. Journal of Power Electronics Vol.5 No.2 ,
2005.4, 83-98.
[34] Petersson, A.; Thiringer, T.; Harnefors, L.; Petru, T. “Modeling and Experimental Verification
of Grid Interaction of a DFIG Wind Turbine” IEEE Transactions on Energy Conversion, 2005,
Volume: 20 , Issue: 4
[35] Kazachkov, Y.A.; Feltes, J.W.; Zavadil, R. “Modeling Wind Farms for Power System Stability
Studies” Power Engineering Society General Meeting, 2003, IEEE
Volume: 3.
[36] Lei, Y., Mullane, A., Lightbody, G., and Yacamini, R., “Modeling of the Wind Turbine With a
Doubly Fed Induction Generator for Grid Integration Studies”, IEEE Transactions On Energy
Conversion, Vol. 21, No. 1, March 2006.
[37] Li, R., Bozhko, S., and Asher, G. “Grid With LCC-HVDC Link Connection Frequency Control
Design for Offshore Wind Farm”, IEEE Transactions On Power Electronics, Vol. 23, No. 3, May
2008.
[38] Haghifam, M.R. and Omidvar, M., “Wind Farm Modeling in Reliability Assessment of Power
System”, Proceedings of the 9th International Conference on Probabilistic Methods Applied to
Power Systems, 2006.
[39] Efthymiadis, A.E., Heath, A.J.B., Lynch, C. A., Youssef, R.D., Jenkins, N. “Modeling of Wind
Powered Generation in AC Power Systems”, IEE Power Management and Control Conference
Publication, 2002.
[40] Ha, L.T., Saha, T.K. ,“Investigation of Power Loss and Voltage Stability Limits for Large Wind
Farm Connections to a Subtransmission Network”, IEEE Power Engineering Society General
Meeting, 2004.
[41] Mohammed, H., and Nwankpa, C.O., “Stochastic Analysis and Simulation of Grid-Connected
Wind Energy Conversion System”, IEEE Transactions On Energy Conversion, Vol. 15, No. 1,
March 2000.
[42] Dysko, A., Booth, C. Anaya-Lara, O. and Burt, G.M. “Reducing Unnecessary Disconnection of
Renewable Generation from the Power System”, IET Renewable Power Generation, 2007, 1, (1),
pp. 41–48.
Modeling Wind Farms in Power System Simulation Studies: A Review
67
[43] Paap, G.C., Jansen, F., Wiercx, F.K.M.A. “The Influence of Voltage Sags on the Stability of 10
kV Distribution Networks with Large-Scale Dispersed Co-Generation and Wind Generators”,
CIRED 2001 Conference Publication, IEE 2001.
[44] Varma, R.J., and Auddy, S. “Mitigation of Subsynchronous Oscillations in a Series Compensated
Wind Farm with Static Var Compensator”, IEEE Power Engineering Society General Meeting,
2006.
[45] Norheim, I, Pálsson, M., Tande, J.O.G, and Uhlen, K., “Method for Assessing Wind Power
Integration in a Hydro Based Power System”, Nordic Wind Power Conference, 2006, Espoo,
Finland.
[46] Muljadi, E.; Butterfield, C.P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.;
Delmerico, R.; Zavadil, R.; Smith, J.C. “Equivalencing the Collector System of a Large Wind
Power Plant”, IEEE Power Engineering Society General Meeting, 2006.
[47] Johnsen, K. and Eliasson, B. “SIMULINK Implementation of Wind Farm Model for Use in
Power System Studies”, NWPC 2004.
[48] Muljadi, E., and McKenna, H.E., “Power Quality Issues In A Hybrid Power System”, IEEE
Transactions On Industry Applications, Vol. 38, No. 3, May/June 2002.
[49] Muljadi, E.; Butterfield, C.P.; Chacon, J.; Romanowitz, H. , “Power Quality Aspects in a Wind
Power Plant”, IEEE Power Engineering Society General Meeting, 2006.
[50] BiHui, L., Hong, S., Yong, T., Hongyun, Z., Feng, S., Dongfu,L., “Study on the frequency
control method and AGC model of wind power integration based on the full dynamic process
simulation program”, 2011, The International Conference on Advanced Power System
Automation and Protection.

Thank you for copying data from http://www.arastirmax.com