You are here

BİR TÜNEL YANGININDA DUMAN OLUŞUMUNUN TEORİK OLARAK İNCELENMESİ

THEORETICALLY INVESTIGATION OF SMOKE PRODUCTION IN A TUNNEL FIRE

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
Fire is the heat and light energy released during a chemical reaction, in particular a combustion reaction. Depending on the substances alight, and any impurities outside, the color of the flame and the fire's intensity might vary. Fire in its most common form can result in conflagration, and has the potential to cause physical damage through burning. Fires in buildings and transportation systems are a threat to human lives and also to buildings and cultural heritage. In a fire inferno, most of the victims die due to late detection of the fire and consequent inhalation of toxic smoke gases. In addition to the human consequences, the economic and cultural loss is significant.
Abstract (Original Language): 
Yangın özellikle bir yanma reaksiyonunda kimyasal reaksiyon boyunca ısı ve enerji ortaya çıkmasıdır. Yanmış olan maddelere ve dışarıdaki kirliliğe bağlı olarak alevin rengi ve yangının şiddeti değişebilir. En yaygın formda alev/ateş büyük bir yangınla sonuçlanabilir ve büyük fiziksel zararlara sebep olabilecek potansiyeli vardır. Taşıma sistemlerindeki ve yapı/binalardaki yangınlar insan yaşamına olduğu gibi bina ve kültürel mirasada bir tehdit olmaktadır. Bir yangın cehenneminde, yangının geç tespiti dolayısıyla toksit duman gazlarının solunmasıyla dumana maruz kalanların çoğu ölür. Bu insan ölümlerine ilave olarak ekonomik ve kültürel kayıp da çok önemlidir.
1
18

REFERENCES

References: 

[1] Kevin B. McGrattan, Anthony Hamins, 2001, Numerical Simulation of the
Howard Street Tunnel Fire, Fire Research Division Building and Fire Research Laboratory.
[2] A.R.Nilsen, T.Log, 2009, Results from three models compared to full-scale tunnel
fires tests Fire Safety Journal 44 (2009) 33– 49.
Erinç DOBRUCALI
18
[3] J. Collazo, J. Porteiro *, D. Patiño, J.L. Miguez, E. Granada, J. Moran, 2009,
Simulation and experimental validation of a methanol burner, Fuel 88 (2009) 326–334.
[4] I.S. Lowndesa, S.A. Silvestera,, D. Giddingsb, S. Pickeringb, A. Hassanb, E.
Lester, 2007, The computational modelling of flame spread along a conveyor belt, Fire
Safety Journal 42 (2007) 51–67.
[5] F. Liu, J.X. Wen, 2002, The effect of turbulence modelling on the CFD simulation
of buoyant diffusion flames, Fire Safety Journal 37 (2002) 125–150.
[6] D. Rusch, L. Blum, A. Moser, T. Roesgen, 2008, Turbulence model validation for
fire simulation by CFD and experimental investigation of a hot jet in crossflow, Fire Safety
Journal 43 (2008) 429–441.
[7] J.P. Kunsch, 2002, Simple model for control of fire gases in a ventilated tunnel,
Fire Safety Journal 37 (2002) 67–81.
[8] C.C. Hwang_, J.C. Edwards, 2005, The critical ventilation velocity in tunnel
fires—a computer simulation, Fire Safety Journal 40 (2005) 213–244.
[9] Y. Wu, M.Z.A. Bakar, 2000, Control of smoke Flow in tunnel fires using
longitudinal ventilation systems a study of the critical velocity, Fire Safety Journal 35
(2000) 363}390.
[10] Sherman C.P. Cheunga, Richard K.K. Yuena,, G.H. Yeohb, Grace W.Y. Cheng,
2004, Contribution of soot particles on global radiative heat transfer in a two-compartment
fire, Fire Safety Journal 39 (2004) 412–428.
[11] Karim Van Maele, Bart Merci, 2008, Application of RANS and LES field
simulations to predict the critical ventilation velocity in longitudinally ventilated horizontal
tunnels, Fire Safety Journal 43 (2008) 598–609.

Thank you for copying data from http://www.arastirmax.com