You are here

Medida de la eficacia de las 32 franquicias de la NFL durante la temporada 2014. Una aproximación mediante análisis envolvente de datos

MEASURING THE EFFICIENCY OF THE 32 FRANCHISES IN THE NFL DURING THE 2014 SEASON. A DATA ENVELOPMENT ANALYSIS APPROACH

Journal Name:

Publication Year:

Abstract (2. Language): 
In this paper the Data Envelopment Analysis (DEA) technique has been used to measure de efficiency of the 32 teams’ payroll in the National Football League (NFL) in season 2014. The financial structure of the NFL promotes competition and does not favour any franchise, which assures that no team is able to overspend to win. Besides victories, several output variables have been taken into account to measure de statistics of the on-the-field performance, such as points per game and yards per attempt. Finally, the article shows that, not always teams, which make it to the post-season, are the most efficient.
Abstract (Original Language): 
En este trabajo se utiliza la técnica Análisis Envolvente de Datos (DEA), para medir la eficiencia de los pagos de salarios a jugadores de los 32 equipos de la Liga Nacional de Football (NFL) en la temporada 2014. La estructura financiera de la NFL, incentiva la competencia y no favorece a ningún equipo, lo cual asegura que ninguna franquicia puede gastar excesivamente para ganar. Además de las victorias, se han tomado como variables decisoras de salida estadísticas de desempeño en-el-campo, como los puntos por partido y las yardas por intento. Por último, el artículo muestra que no siempre, los equipos que llegan a la postemporada son los más eficientes.
37
53

REFERENCES

References: 

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for the estimation of
technical and scale inefficiencies in data envelopment analysis. Management
Science(30), 1078-1092.
Palafox-Alcantar, P.G. & Vargas-Hernández, J.G. (2015). Measuring the efficiency of the 32 franchises in the NFL during
the 2014 season. A data envelopment analysis approach. Journal of Sports Economics & Management, 5(1), 37-53.
2340-7425 © 2015 The Authors. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0)
49
Charnes, A., Cooper, W., & Rhodes, R. (1978). Measuring the efficiency of decision making
units. European Journal of Operational Research, 2, 429-444.
Charnes, A., Cooper, W., Devine, D., Ruefli, T., & Thomas, D. (1989). Comparisons of DEA
and existing ratio and regression systems fo efficiency evaluation of regulated electric
cooperatives in Texas. Research in governmental and nonprofit accountign, 187-
210.
Del Corral, J., Maroto, A., & Gallardo, A. (2015). Are former porfessional athletes and native
better coaches? Evidence from spanish basketball. Journal of Sports Economics.
Einolf, K. (2004). Is Winning Everything? A Data Envelopment Analysis of Major League
Baseball and the National Football League. Journal of Sports Economics, 5(2), 127-
151.
FootballDB. (2015). FootballDB team stats. Retrieved Mayo 23, 2105, from
http://www.footballdb.com/stats/teamstat.html?lg=NFL&yr=2014&cat=T&group=
O&conf=&sort=teamname
Fort, R., Lee, Y., & Berri, D. (2008). Race, Technical Efficiency, and Retenttion: The Case of
NBA Coaches. International Journal of Sport Finance, 3(2), 84-97.
Gutiérrez, E., & Lozano, S. (2014). A DEA Approach to Performance-Based Budgeting of
Formula One Constructors. Journal of Sports Economics, 15(2), 180-200.
Guzmán, I., & Morrow, S. (2007). Measuring efficiency and productivity in professional
football teams: evidence from the English Premier League. Central European
Journal of Operations Research(15), 309-328.
Moreno, P., & Lozano, S. (2015). Estimation of Productivity Change of NBA Teams from
2006-07 to 201-13 Season. International Journal of Sport Finance, 10, 217-241.
NFL. (2015). NFL team stats. Retrieved Mayo 23, 2015, from
http://www.nfl.com/stats/categorystats?seasonType=REG&offensiveStatistic...
ry=null&d-447263-n=1&d-447263-o=2&d-447263-p=1&d-447263-
s=TOTAL_POINTS_GAME_AVG&tabSeq=2&season=2014&role=OPP&Submit=Go
&archive=false&conference=null&defensiveStatisticCategory=
Rogge, N., Van Reeth, D., & Van Puyenbroeck, T. (2013). Performance Evaluation of Tour
de France Cycling Teams Using Data Envelopment Analysis. International Journal
of Sport Finance(8), 236-257.
Ruiz, J., Pastor, D., & Pastor, J. (2013). Assessing Professonal Tennis Players Using Data
Envelopment Analysis (DEA). Journal of Sports Economics, 14(3), 276-302.
Spotrac. (2015). Spotrac. Retrieved Mayo 21, 2015, from
http://www.spotrac.com/nfl/cash/2014/
Palafox-Alcantar, P.G. & Vargas-Hernández, J.G. (2015). Measuring the efficiency of the 32 franchises in the NFL during
the 2014 season. A data envelopment analysis approach. Journal of Sports Economics & Management, 5(1), 37-53.
2340-7425 © 2015 The Authors. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0)
50
Tiedemann, T., Francksen, T., & Latacz-Lohmann, U. (2011). Assessing the performance of
German Bundesliga football plaers: a non parametric metafrontier approach. Central
European Journal of Operations Research(19), 571-587.
Wang, C., Gopal, R., & Zionts, S. (1997). Use of data envelopment analysis in assessing
information technology impact on firm performance. Annuals of Operations
Research(73), 191-213.

Thank you for copying data from http://www.arastirmax.com