You are here

MATHEMATICAL MODELLING IN ENGINEERING: A PROPOSAL TO INTRODUCE LINEAR ALGEBRA CONCEPTS

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.3926/jotse.177
Abstract (2. Language): 
The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and emerging heuristic models for the construction of specific linear algebra concepts: span and spanning set. This was applied to first year engineering students. Results suggest that this type of instructional design contributes to the construction of these mathematical concepts and can also improve first year engineering students’ understanding of key linear algebra concepts and enhance the development of higher order skills.
62
70

REFERENCES

References: 

Alsina, C. (2007). Teaching applications and modelling at tertiary level. In W. Blum, P. Galbraith, H.-W. Henn, &
M. Niss (Eds.), Modelling and applications in mathematics education (pp. 469-474). New York: Springer.
http://dx.doi.org/10.1007/978-0-387-29822-1_53
Blum W., & Leiss D. (2007). How do students and teachers deal with modelling problems?. In C. Haines, P.
Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA12): Education, Engineering and
Economics (pp. 222-231). Chichester, UK: Horwood Publishing. http://dx.doi.org/10.1533/9780857099419.5.221
Carlson, D., Johnson, C.R., Lay, D.C., & Porter, A.D. (1993). The linear algebra curriculum Study group
recommendations for the first course in linear algebra. The College Mathematics Journal, 24(1), 41-46.
http://dx.doi.org/10.2307/2686430
Cobb, P., & Gravemeijer, K.P.E. (2008). Experimenting to support and understand learning processes. In Anthony
E. Kelly, R. A. Lesh & J. Y. Baek (Eds.), Handbook of design research methods in education innovations in science,
technology, engineering, and mathematics learning and teaching (pp. 68-95). New York, NY: Routledge.
Day, J., & Kalman, D. (1999). Teaching linear algebra: What are the questions. Department of Mathematics at
American University in Washington DC, 1–16.
Doorman, M., Drijvers, P., Gravemeijer, K., Boon, P., & Reed, H. (2013). Design research in mathematics
education: The case of an ict-rich learning arrangement for the concept of function. In T. Plomp, & N. Nieveen
(Eds.), Educational design research – Part B: Illustrative cases (pp. 425-446). Enschede, the Netherlands: SLO.
Dorier, J.L. (2002). Teaching linear algebra at university. In ICM, 3 (pp.875-874).
Dorier, J.L., & Sierpinska, A. (2001). Research into the teaching and learning of linear algebra. In The Teaching
and Learning of Mathematics at University Level (pp. 255-273). Springer Netherlands.
Gómez, J.V., & Fortuny, J.M. (2002). Contribución al estudio de los procesos de modelización en la enseñanza de
las matemáticas en escuelas universitarias. Uno: Revista de didáctica de las matemáticas, (31), 7-23.
Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics.
Mathematical Thinking and Learning, 1, 155-177. http://dx.doi.org/10.1207/s15327833mtl0102_4
Gravemeijer, K. (2007). Emergent modelling as a precursor to mathematical modelling. In W. Blum, P. L.
Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 137-144).
New York: Springer. http://dx.doi.org/10.1007/978-0-387-29822-1_12
Gravemeijer, K., & Cobb, P. (2013). Design research from the learning design perpective. In Plomp T. & N.
Nieveen (Eds.), Educational Design research. Part A: An introduction (pp. 72-113). Enschede, the Netherlands:
SLO.
Hillel, J. (2000). Modes of Description and the Problem of Representation in Linear Algebra. In J.-L. Dorier (Ed.),
On the teaching of linear algebra (pp. 191-208). Dordrecht: Kluwer Academic Publishers.
Kadijevich, D. (2007). Towards a wider implementation of mathematical modelling at upper secondary and
tertiary levels. In W. Blum, P. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics
education (pp. 349-355). New York: Springer. http://dx.doi.org/10.1007/978-0-387-29822-1_37
Kaiser, G. (2010). Introduction: ICTMA and the teaching of modeling and applications. In R. Lesh, P. L. Galbraith,
C. R. Haines, & A. Hurford (Eds.), Modeling students' mathematical modeling competencies (pp. 1-2). New York:
Springer. http://dx.doi.org/10.1007/978-1-4419-0561-1_1
Kolman, B., & Hill, D.R. (2006). Álgebra Lineal. Pearson Educación.
Simon, M.A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for
Research in Mathematics Education, 26, 114-145. http://dx.doi.org/10.2307/749205
Trigueros, G. (2009). El uso de la modelación en la enseñanza de las matemáticas. Innovación Educativa, 9(46),
75-87.
Vanegas, J., & Henao, S. (2013). Educación matemática realista: La modelización matemática en la producción y
uso de modelos cuadráticos. In Actas del VII CIBEM, (pp. 2883-2890). Montevideo, Uruguay: IIV CIBEAM.

Thank you for copying data from http://www.arastirmax.com