You are here

Sterik Olarak Engelli Aminlerin Susuz Çözeltileriyle Karbon Dioksidin Reaksiyon Kinetikleri

Reaction Kinetics of Carbon Dioxide with Nonaqueous Solutions of Sterically Hindered Amines

Journal Name:

Publication Year:

Abstract (2. Language): 
Due to existing energy intensive CO2 capture processes and rising fuel costs, alternative and affordable solvents or technologies for CO2 capture have gained importance in the research of reducing global warming. To that effect, sterically hindered amines have been introduced which have high CO2 absorption capacities by means of the formation of unstable carbamate ions. Another factor leading to an affordable solvent for CO2 capture could be using nonaqueous solvents instead of aqueous solvents in the process. This is important because nonaqueous solvents can eliminate some of the problems of aqueous solvents such as corrosion and high thermal requirements. To that end, in this study, we investigated the reaction kinetics of CO2 and two sterically hindered amines; 2-amino-2-methyl-1,3-propanediol (AMPD) and 2-amino-2-ethyl-1,3-propanediol (AEPD) in ethanol. The pseudo–first-order reaction rate constants of the reactions between CO2 and sterically hindered amines were measured in ethanol at 288, 298 and 308 K by using direct stopped-flow technique. The measured rate constants were then analyzed by using the equations of termolecular reaction mechanism. The orders of the reactions (n) between CO2-AMPD and CO2-AEPD were found as 1 and 2, respectively.
Abstract (Original Language): 
Şu anda var olan CO2 tutuklama süreçleri ve artan yakıt maliyetlerinden ötürü, küresel ısınmayı azaltacak araştırmalarda CO2 tutuklama için ucuz çözücüler veya teknolojilerin kullanılması önem kazanmıştır. Bu anlamda, sterik olarak engelli aminler, kararsız karbamat iyonlarının oluşumu yoluyla yüksek CO2 soğurma kapasitelerine sahip moleküller olarak bilim dünyasının dikkatine sunulmuştur. CO2 tutuklanması için ucuz bir faktör de süreçte sulu çözücüler yerine susuz çözücülerin kullanılmasıdır. Bu değişiklik önemlidir, çünkü sulu çözücülerin korozyon ve yüksek ısıl gereksinimleri gibi bazı sorunları giderilmektedir. Bu bakımdan çalışmada CO2 ve iki sterik olarak engelli amin (2-amino-2-metil-1,3-propandiol, AMPD ve 2-amino-2-etil-1,3-propandiol, AEPD) reaksiyon kinetikleri etanollü çözeltide çalışılmıştır. CO2 ve sterik olarak engelli aminler arasındaki yalancı birinci mertebeden reaksiyon hızı sabitleri etanol içinde 288, 298 ve 308 K sıcaklıklarda doğrudan durdurulmuş akış tekniği ile ölçülmüştür. Ölçülen hız sabitleri üç moleküllü reaksiyon mekanizması kullanılarak analiz edilmiştir. CO2-AMPD ve CO2-AEPD arasındaki reaksiyonların mertebeleri (n) sırasıyla 1 ve 2 olarak tespit edilmiştir.
91
102

REFERENCES

References: 

1. Third Assessment Report. IPCC Climate Change, Intergovernmental Panel on Climate
Change; 2001. http://www.ipcc.ch/ipccreports/tar/
2. McCann N, Maeder M, Attalla M. Simulation of enthalpy and capacity of CO2 absorption by
aqueous amine systems. Ind. Eng. Chem. Res. 2008; 47:2002–2009. DOI: 10.1021/ie070619a
3. Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG, Klepper G, Field CB. Global and
regional drivers of accelerating CO2 emissions. Proc. Natl. Acad. Sci. 2007; 104:10288–10293.
DOI: 10.1073/pnas.0700609104
4. Metz B, Ogunlade D, de Coninck H, Loos M, Meyer L. Intergovernmental Panel on Climate
Change Special Report on Carbon dioxide Capture and Storage. Cambridge University Press,
New York, United States: 2005. https://www.ipcc.ch/report/srccs/
5. Metz B, Davidson, OR, Bosch PR, Dave R. IPCC: Summary for Policymakers, in Climate
Change: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change. Cambridge University Press, New York, United
States: 2007.
https://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_asses...
_report_mitigation_of_climate_change.htm
6. de Koiejer G, Solbraa E. High pressure gas sweetening with amines for reducing CO2
emissions. 7th International Conference on Greenhouse Gas Control Technologies. Vancouver,
Canada: 2004. http://www.sciencedirect.com/science/book/9780080447049
7. Kvamsdal HM, Maurstad O, Jordal K, Bolland O. Benchmarking of gas turbine cycles with
CO2 capture. 7th International Conference on Greenhouse Gas Control Technologies. Vancouver,
Canada: 2004. http://www.academia.edu/14972806
8. Danckwerts PV. The reaction of CO2 with ethanolamines. Chem. Eng. Sci. 1979; 34:443–
446. DOI:10.1016/0009-2509(79)85087-3
9. Alejandre J, Rivera JL, Mora MA, de la Garza VJ. Force field of monoethanolamine. Phys.
Chem. B 2000; 104:1332–1337. DOI: 10.1021/jp993101w
10. da Silva E, Svendsen HF. Study of the carbamate stability of amines using ab initio
methods and free-energy perturbations. Ind. Eng. Chem. Res. 2006; 45:2497–2504.
DOI: 10.1021/ie050501z
11. Sartori G, Savage DW. Sterically hindered amines for carbon dioxide removal from gases.
Ind. Eng. Chem. Fundam. 1983; 22:239-249. DOI: 10.1021/i100010a016
Gördesli Duatepe and Alper, JOTCSA. 2017; 1(1): 91-102 RESEARCH ARTICLE
100
12. Baek JI, Yoon JH. Solubility of carbon-dioxide in aqueous-solutions of 2-amino-2-methyl-
1,3-propanediol. J. Chem. Eng. Data 1998; 43:635-637. DOI: 10.1021/je980024
13. Baek JI, Yoon JH, Eum HM. Prediction of equilibrium solubility of carbon dioxide in aqueous
2-amino-2-methyl-1,3-propanediol solutions. Korean J. Chem. Eng. 2000; 17:484-487. DOI:
10.1007/BF02706866
14. Bouhamra W, Bavbek O, Alper E. Reaction mechanism and kinetics of aqueous solutions of
2-amino-2-methyl-1,3-propandiol and carbon dioxide. Chem. Eng. J. 1999; 73:67-70.
http://dx.doi.org/10.1016/S1385-8947(99)00017-0
15. Gordesli FP, Ume CS, Alper E. Mechanism and kinetics of carbon dioxide capture using
activated 2-amino-2-methyl-1,3-propanediol. Int. J. Chem. Kinetics 2013; 45:566-573.
DOI: 10.1002/kin.20787
16. Ume CS, Alper E, Gordesli FP. Kinetics of carbon dioxide reaction with aqueous mixture of
piperazine and 2-amino-2-ethyl-1,3-propanediol. Int. J. Chem. Kinetics 2013; 45:161-167.
DOI: 10.1002/kin.20752
17 .Yoon JH, Baek JI, Yamamoto Y, Komai T, Kawamu T. Kinetics of removal of carbon dioxide
by aqueous 2-amino-2-methyl-1, 3-propanediol, Chem. Eng. Sci. 2003; 58:5229-5237.
http://dx.doi.org/10.1016/j.ces.2003.08.019
18. Ali SH, Merchant SQ, Fahim MA. Kinetic study of reactive absorption of some primary
amines with carbon dioxide in ethanol solution. Sep. Purif. Technol. 2000; 18:163−175.
http://dx.doi.org/10.1016/S1383-5866(99)00064-7
19 .Bratzler K, Doerges A. Amisol process purifies gases. Hydrocarbon Process 1974;
53:78−80. DOI: 10.1002/14356007.a12_169.pub2
20. Kadiwala S, Rayer AV, Henni A. Kinetics of carbon dioxide (CO2) with ethylenediamine, 3-
amino-1-propanol in methanol and ethanol, and with 1-dimethylamino-2-propanol and 3-
dimethylamino-1-propanol in water using stopped-flow technique. Chem. Eng. J. 2012;
179:262−271. http://dx.doi.org/10.1016/j.cej.2011.10.093
21. Sada E, Kumazawa H, Osawa Y, Matsuura M, Han Z. Reaction kinetics of carbon dioxide
with amines in non-aqueous solvents. Chem. Eng. J. 1986; 33:87−95. DOI:10.1016/0300-
9467(86)80038-7
22. Miyazawa T, Koso S, Kunimori K, Tomishige K. Glycerol hydrogenolysis to 1,2-propanediol
catalyzed by a heat-resistant ion-exchange resin combined with Ru/C. Appl. Catal. 2007; A
329:30–35. http://dx.doi.org/10.1016/j.apcata.2007.06.019
23. Yuan Z, Wang J, Wang L, Xie W, Chen P, Hou Z, Zheng X. Biodiesel derived glycerol
hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts. Bioresour. Technol. 2010; 101:7088–
7092. http://dx.doi.org/10.1016/j.biortech.2010.04.016
24. Alper E. Reaction mechanism and kinetics of aqueous solutions of 2-amino-2-methyl-1-
propanol and carbon dioxide. Ind. Eng. Chem. Res. 1990; 29:1725–1728.
DOI: 10.1021/ie00104a023
25. Gordesli FP, Alper E. The kinetics of carbon dioxide capture by solutions of piperazine and
N-methyl piperazine. Int. J. Global Warm. 2011; 1:67–76.
http://dx.doi.org/10.1504/IJGW.2011.03837
Gördesli Duatepe and Alper, JOTCSA. 2017; 1(1): 91-102 RESEARCH ARTICLE
101
26. Crooks JE, Donnellan JP. Kinetics and mechanism of the reaction between carbon dioxide
and amines in aqueous solution. J. Chem. Soc. Perkin Trans. 1989; 2:331–333.
DOI: 10.1039/P29890000331

Thank you for copying data from http://www.arastirmax.com