You are here

Narlı Ovası’nda Toprak Aşınabilirliğinin Pedotransfer Yaklaşım ile Tahminlenmesi

Predicting of Soil Erodibility with Pedotransfer Approach in Narlı Plain

Journal Name:

Publication Year:

Abstract (2. Language): 
A resistance of soils against erosive power relates to their physical and chemical properties closely. Many indices based on structural strength were developed for conceive soil erosion sensitivity. Wet aggregate stability (WAS) is an important and common indicator at express of soil erodibility. Measuring of this index is time consuming and tedious usually. For this reason, mentioned index can be predict by different tools instead of direct measurement. Pedotransfer functions are available and practical equations for estimating of difficult determining soil properties. The objective of this study is to predict of soil erodibility in Kahramanmaraş Narlı Plain with pedotransfer functions. End of the laboratory analyses whole data was transferred digital platform and tested statistically. Pedotransfer functions were generated for WAS by using multiple linear regression method. Performances of pedotransfer functions show differences depending on selected independent variables. Maximum determination coefficient reflect to interactions between measured and estimated values were obtained as R2= 0.8906. This finding means that pedotransfer approach can be used for estimating of soil erodibility in Narlı Plain.
Abstract (Original Language): 
Erozif güçlere karşı toprağın direnci fiziksel ve kimyasal toprak özellikleri ile sıkı derecede ilişkilidir. Toprağın erozyona hassasiyetini değerlendirmek için strüktürel dayanımı esas alan pek çok indeks geliştirilmiştir. Islak agregat stabilitesi (WAS) toprak aşınabilirliğini ifade etmede kullanılan en önemli ve yaygın aşınım göstergesidir. Bu indeksin ölçümü çoğunlukla zaman alıcı ve usandırıcıdır. Bu sebeple, adı geçen indeks doğrudan ölçüm yerine farklı araçlarla tahminlenebilmektedir. Pedotransfer modeller zor belirlenen toprak özelliklerinin tahminlenmesi için yarayışlı ve kullanışlı eşitliklerdir. Bu çalışmanın amacı Kahramanmaraş Narlı Ovası topraklarının aşınabilirliğini pedotransfer eşitlikler ile tahminlemektir. Laboratuar analizlerinin sonunda elde edilen veri kümesi dijital ortama aktarılmış ve istatistiksel olarak test edilmiştir. WAS’ı tahminlemek için çoklu lineer regresyon yoluyla pedotransfer eşitlikler geliştirilmiştir. Pedotransfer eşitliklerin tahminleme performansı seçilen bağımsız değişkenlere göre farklılık göstermiştir. Ölçülen ve tahminlenen WAS değerleri arasındaki interaksiyonu gösteren determinasyon katsayısı en yüksek R2= 0.8906 olarak elde edilmiştir. Bu bulgu Narlı Ovası’nda toprak aşınabilirliğinin tahminlenmesinde pedotransfer yaklaşımın kullanılabileceği anlamına gelmektedir.
59-67

REFERENCES

References: 

Bouma, J. 1989. Using Soil Survey Data for
Quantitative Land Evaluation. Advances in Soil
Science, 9: 177-213.
Bouyoucos, G.J. 1951. A Calibration of the Hydrometer
Method for Making Mechanical Analyses of Soils.
Agron J. 43: 434-438.
Braudeau, E., Mohtar, R.H., Chahinian, N. 2004.
Estimating Soil Shrinkage Parameters.
(Development of Pedotransfer Functions in Soil
Hydrology, Elsevier, Ed. Pachepsky, Y., Rawls,
W.J.) 225-240.
Chenu, C., Le Bissonnais, Y., Arrouays, D. 2000.
Organic Matter Influence on Clay Wettability and
Soil Aggregate Stability. Soil Sci. Soc. Am. J. 64:
1479-1486.
Coşkan, P. K. 2000. Kahramanmaraş Narlı Ovası
Topraklarının Fiziksel, Kimyasal, Mineralojik
özelliklerinin Belirlenmesi ve Olası Tarımsal
Uygulama Etkilerinin Araştırılması. KSÜ Fen Bil.
Ens. Yüksek Lisans Tezi.
Goncalves, M.C., Pereira, L.S., Leij, F.J. 1997. Pedo-
Transfer Functions for Estimating Unsaturated
Hydraulic Properties of Portuguese Soils. Euro. J.
Soil. Sci. 48: 387-400.
Gülser, C., Özdemir, N., Aşkın, T., Candemir, F.,
Korkmaz, A. 2002. Using N Value as an Indicator of
Soil Structural Stability. International Conference on
Sustainable Land Use and Management. 10-13,
June, Çanakkale, Turkey.
Gülser, C., Candemir, F. 2008. Prediction of Saturated
Hydraulic Conductivity Using Some Moisture
Constants and Soil Physical Properties. BALWOIS,
27-31 May, Macedonia.
Haynes, R.J., Swift, R.S. 1990. Stability of Soil
Aggregates in Relation to Organic Constituents and
Soil Water Content. Journal of Soil Sci. 41: 73-83.
Hudson, N. 1995. Soil Conservation. B.T. Batsford
Limited, London, UK.
Kacar, B. 1994. Bitki ve Toprağın Kimyasal Analizleri
III. (Toprak Analizleri). Ankara Üniversitesi Ziraat
Fakültesi Eğitim Araştırma ve Geliştirme Fonu
Yayınları, No. 3, Ankara.
Kemper, W.D., Rosenau, R.C. 1986. Aggregate
Stability and Size Distribution. (Methods of Soil
Analysis: Part I. 2nd edn. Ed: Klute, A. ASA,
Madison, WI) 425-442.
Lake, H.R., Akbarzadeh, A., Mehjardi, R.T. 2009.
Development of Pedo Transfer Functions (Ptfs) to
Predict Soil Physic-Chemical and Hydrological
Characteristics in Southern Coastal Zones of The
Caspian Sea. J. Ecology and the Natural
Environment, 1(7): 160-172.
Le Bissonnais, Y., Blavet, D., De Noni, G., Laurent,
J.Y., Asseline, J., Chenu, C. 2007. Erodibility of
Mediterranean Vineyard Soils: Relevant Aggregate
Stability Methods and Significant Soil Variables.
European Journal of Soil Science, 58: 188-195.
Mamedov, A.I., Beckmann, S., Huang, C., Levy, G.J.
2007. Aggregate Stability as Affected by
Polyacrylamide Molecular Weight, Soil Texture, and
Water Quality. Soil Sci. Soc. Am. J. 71: 1909-1918.
McBratney, A.B., Minasny, B., Cattle, S.R., Vervoort,
R.W. 2002. From Pedotransfer Functions to Soil
Inference Systems. Geoderma, 109: 41-73.
McBratney, A.B., Minasny, B., Rossel, R.V. 2006.
Spectral Soil Analysis and Inference Systems: A
Powerful Combination for Solving the Soil Data
Crisis. Geoderma, 136: 272-278.
Merdun, H. 2006. Pedotransfer Functions for Point and
Parametric Estimations of Soil Water Retention
Curve. Plant Soil Environ. 52(7): 321-327.
Minasny, B. 2007. Predicting Soil Properties. Jurnal
Ilmu Tanah dan Lingkungan, 7(1): 54-67.
Öztekin, T., Cemek, B., Brown, L. 2007. Pedotransfer
Functions for the Hydraulic Properties of Layered
Soils. GOÜ. Ziraat Fakültesi Dergisi, 24(2): 77-86.
Pachepsky, Y.A., Rawls, W.J., Lin, H.S. 2006.
Hydropedology and Pedotransfer Functions.
Geoderma, 131: 308-316.
Rowell, D.L., 1996. Soil Science: Methods and
Applications. 3rd edn., Longman. London.
Shalmani, A.A., Shahrestani, M.S., Asadi, H., Bagheri,
F. 2010. Comparison of Regression Pedotransfer
Functions and Artificial Neural Networks for Soil
Aggregate Stability Simulation. 19th Wold Congress
of Soil Science, Soil Solutions for a Changing
World. 1-6 August, Brisbane, Australia.
Singh, M.J., Khera, K.L. 2010. Evaluation and
Estimation of Soil Erodibility by Different
Techniques Their Relationship. 19th World
Congress of Soil Science, Soil Solutions for a
Changing World. 1-6 August, Brisbane, Australia.
Soil Survey Staff, 1998. Soil Survey Manual. USDA
Handbook No. 18. Washington, DC. TARİST, 1994. İstatistik Programı. Ege Üniversitesi
Tarım ve Ormancılık Araştırma Enstitüsü Yayınları,
İzmir.
Tisdall, J.M., Oades, J.M. 1982. Organic Matter and
Water-Stable Aggregates. Journal of Soil Sci. 33:
141-163.
Yormah, T.B.R., Egbenda, P.O. 2005. An Assessment
of the Soil Conditioning Capacity of Gums Exuded
by Some Trees in Sierra Leone II: Raindrop
Experiments. AJST, 6(1): 90-96.
Young, I.M., Crawford, J.W., Rappoldt, C., 2001. New
Methods and Models for Characterizing Structural
Heterogeneity of Soil. Soil & Tillage Research, 61:
33-45.

Thank you for copying data from http://www.arastirmax.com