You are here

Determination of Land Use and Land Cover Using Remote Sensing in Sakarya

Uzaktan Algılama Tekniği ile Fındık Üretim Alanlarının Planlanması ve Kontrolü

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Sakarya, Karadeniz kıyısında, 483.500 hektar alana yayılmış, başta fındık üretimi alanları olmak üzere tarım ve orman alanları bakımından önemli bir ilimizdir. Sakarya ilinde özellikle fındık üretim alanlarında zaman içerisinde büyük değişiklikler yaşanmıştır. Devlet üzerindeki aşırı alımdan dolayı meydana gelen ekstra yük ile çiftçiler üzerindeki arz-talep ilişkilerindeki düzensizlik nedeniyle oluşan sıkıntıları ortadan kaldırmak için arazi kullanım ve örtüsü izlenerek üretimin kontrol altında tutulması gerekmektedir. Geleneksel yöntemlerle arazi kullanım ve örtüsünün belirlenmesi çok zaman alması yanında aşırı pahalıdır. Bu nedenle, birçok alanda olduğu gibi, arazi kullanım ve örtüsünün araştırılmasında uydu görüntülerinin kullanımı tercih edilmektedir. Bu çalışmada, Sakarya ilinin arazi kullanım ve örtüsünün saptanmasında Landsat uydu görüntüsü kullanılmıştır. Arazi kullanım ve örtüsünün belirlenmesi, maksimum benzerlik algoritması kullanılarak kontrollü sınıflandırma metoduyla gerçekleştirilmiştir. Çalışma sonucunda, fındık ekili alan 87.374 ha, tarım alanı 168.801 ha, orman 1 alanı 179.627 ha, orman 2 alanı 1, 22.226 ha, özel ürün ekili alan 1.497 ha ve su yüzeyi 18.312 ha olarak saptanmıştır. Ortalama sınıflama doğruluğu ve kappa katsayısı sırasıyla % 86 ve 0.811 olarak hesaplanmıştır. Sonuçta, fındık kanunu ve yönetmeliğine göre fındık üretimi için uygun alan 47, 263 ha olmasına rağmen, şu anda 87.374 ha alanda üretimin yapıldığını saptanmıştır. Bu durum, çalışma alanında fındık üretimi için uygun olmayan 40.111 hektarlık alanda yasa dışı üretimin gerçekleştirildiğini göstermektedir.
Abstract (Original Language): 
Sakarya, along the Black Sea, spreads on 483.500 ha area and it has significant resources, not only in agricultural areas (especially hazelnuts production) but also in forest resources. Changes in life styles, study area have been enforced major changes, particularly in Hazelnut production areas. In order to compensate the suffering of producer due to irregular supply and demand and reduce the load on government due to over purchasing, production should be kept under control by monitoring land use/cover. Uses of traditional methods to investigate land use/cover characteristics are highly time consuming and expensive, which are not in fact necessary. For this reason, as in many areas, using satellite images in the investigation of the land characteristics is preferable. In this study, land use/land cover of Sakarya province was detected using Landsat image. Supervised classification was performed with using maximum likelihood algorithm. In the end of the study, six classes, 87.374 ha for hazelnut production, 168.801 ha for agriculture, 179.627 ha for forest 1, 22.226 ha for forest 2, 1.497 ha for special products and 18.312 ha for water site, were detected respectively. The overall accuracy and kappa coefficient were calculated as 86% and 0.81 % respectively. The results showed that 47.263 ha area was suitable and allowable for hazelnut production according to Hazelnut Law and Regulations whereas presently hazelnut grown area is about 87.374 ha, which means that in 40.111 ha unsuitable area hazelnut is produced illegally.
16-23

REFERENCES

References: 

Anonymous, 2010. Effects of European Union are in
100 issues on everyday life. Republic of Turkey,
General Secretariat of European Union, Presidency
of Civil Society, Communication and Culture,
Ankara,72p.
Baker, J., Briggs, S., Gordon, V., Jones, A., Settle, J.,
Townsend, J., Wyatt, B. 1991. Advances in
Classification for Land Cover Mapping Using SPOT
HRV Imagery. International Journal of Remote
Sensing, 12: 1071–1085.
Barandela, R., Juarez, M. 2002. Supervised
Classification of Remotely Sensed Data with
Ongoing Learning Capability. International Journal
of Remote Sensing, 23 (22): 4965–4970.
Bennett, L.T., Judd, T.S., Adams, M.A. 2000. Closerange
Vertical Photography for Measuring Cover
Changes in Perennial Grasslands. Journal of Range
Management. 53(6): 634-641.
Binh, T.N.K.D., Vromant, N., Hung, N.T., Hens, L.,
Boon, E.K. 2005. Land Cover Changes Between
1968 and 2003 in Cai Nuoc, Ca Mau Peninsula,
Vietnam. Environment, Development and
Sustainability, 7: 519-536.
Booth, D.T., Cox, S.E., Fifield, C., Phillips, M.,
Williamson, N. 2005. Image Analysis Compared
with Other Methods for Measuring Ground Cover.
Arid Land Research and Management, 19: 91-100.
Brodley, C., Friedl, M. 1999. Identifying Mislabeled
Training Data. Journal of Artificial Intelligence
Research, 11: 131–167.
Brooks, C.N., Nevada, R., Powell, R.B., French, N.H.F.,
Shuchman, R.A. 2006. Multi-Temporal And multiplatform
Agricultural Land Cover Classification in
Southeastern Michigan. ASPRS 2006 Annual
Conference Reno, May 1-5, Nevada.
Chuvieco, E., Congalton, R.G. 1998. Using Cluster
Analysis to Improve the Selection of Training
Statistics in Classifying Remotely Sensed Data.
Photogrammetric Engineering and Remote Sensing,
54: 1275–1281.
Congalton, R.G., Green, K. 1998. Assessing the
Accuracy of Remotely Sensed Data: Principles and
Practices, New York: Lewis Publishers.
Esetlili, M.T., Kurucu, Y. 2003. Research on Supervised
Classification Methods to Determine Cotton Planted
Areas by Remote Sensing Technique. Ege
University, Journal of Agricultural Faculty, 40(2):
105-112.
Estes, J.E., Mooneyhan, D.W. 1994. Of Maps And
Myths. Photogrammetric Engineering and Remote
Sensing, 60: 517–524.
Foody, G.M. 1990. Direct Ground Survey for Improved
Maximum Likelihood Classification of Remotely
Sensed Data. International Journal of Remote
Sensing, 11: 1935–1940.
Genc, L., Smith, S., Charles, S., McCorry, F. 2005. A
Comparison of Landsat Thematic Mapper and
Indian Remote Sensing Data for Land Use and Land
Cover Change Assessment. Trakya University
Journal of Science. 6(2): 17-28.
Goward, S.N., Dye, D.G. 1987. Evaluating North
American Net Primary Productivity with Satellite
Observations. Advances in Space Research, 7: 165-
174.
GTHB, 2006. Hazelnut Report. Ministry of Food
Agriculture and Livestock, Sakarya Provincial
Directorate, 5 p.
GTHB, 2007. Project and Statistics Branch 2007 Annual
Activity Summary. Sakarya, Turkey: Ministry of Food
Agriculture and Livestock, Sakarya Provincial
Directorate, 39 p.
GTHB, 2011. The Regulation of Procedures And
Principles on Planning Hazelnut Production and
Determining the Planting Areas with Supporting the
Producers Who Prefer Planting Alternative Products
Instead of Hazelnut and Supplying Technical Help for
These Producers. Ministry of Food Agriculture and
Livestock Sakarya Provincial Directorate.12p.
www.tarim.gov.tr/files/ Mevzuat/yonetmelik_son/
findik~1.pdf Hatfield, J.L., Asrar, G., Kanemasu, E.T. 1984. Intercepted
Photosynthetically Active Radiation Estimated by
Spectral Reflectance. Remote Sensing of Environment,
14: 65-75.
Ince, F. 1986. Maximum Likelihood Classification,
Optimal or Problematic? A Comparison with the KNN
Classification Izmit, Turkey: TUBITAK, Marmara
Scientific and Industrial Research Institute, Electronic
Research Unit, Technical Report No. TR-86/09.
Isik, S. 2007. Sakarya’s Agriculture Geography. Sakarya,
Turkey: Sakarya University, Institute of Social
Sciences,MSc thesis, 123 p. Sakarya, Turkey.
Janssen, L., Van Der Wel, F. 1994. Accuracy
Assessment of Satellite Derived Land Cover Data: a
review. Photogrammetric Engineering and Remote
Sensing, 60: 419-426.
Jones, G.J., Vaughan, R.A. 2010. Remote Sensing of
Vegetation. New York: Oxford University Press, 400p.
Kershaw, C.D., Fuller, R.M. 1992. Statistical Problems
in the Discrimination of Land Cover from Satellite
Images: A Case Study in Lowland Britain.
International Journal of Remote Sensing, 13: 3085–
3104.
Ozyavuz, M. 2010. Analysis of Changes in Vegetation
Using Multi Temporal Satellite Imagery, the Case of
Tekirdag Coastal Town. Journal of Coastal
Research, 26 (6): 1038-1046.
Price K. P, Pike D. A, Mendes L. 1992. Shrub Dieback
in a Semiarid Ecosystem the Integration of Remote
Sensing and Geographic Information Systems for
Detecting Vegetation Change. Photogrammetric
Engineering and Remote Sensing, 58(4): 455-463.
Reis, S., Yomralioglu, T. 2002. Using Landsat ETM to
Obtain Land Use Map of the Province of Trabzon,
7th ESRI and ERDAS Users Meeting, Ankara,
Turkey.
Tucker, C.J., Sellers, P. 1986. Satellite Remote Sensing
of Primary Production. International Journal of
Remote Sensing, 7: 1395-1416.
TUIK. 2009. Turkish Statistical Institute.
http://www.tuik.gov.tr/bitkiselapp/bitkisel.zul
accessed on 16 December, 2009.
Woodcock C. E., Macomber S. A. 2001. Monitoring
Large Areas for Forest Change Using Landsat:
Generalization across Space, Time and Landsat
Sensors. Remote Sensing of Environment, 78 (1):
194-203.

Thank you for copying data from http://www.arastirmax.com