[1] P.J. Antsaklis and Z. Gao, Polynomial and rational matrix interpolation:
theory and control applications, Int. J. Control, vol. 58 pp. 349–404,
1993.
[2] G.D. Birkhoff and S. MacLane, A Survey of Modern Algebra Third Edition,
Macmillan, New York, 1965.
[3] D. Cox, J. Little and D. O’Shea, Ideals, Varieties and Algorithms: an
introduction to computational Algebraic Geometry and Commutative
Algebra, Springer, New York, 1997.
[4] D. Cox, J. Little and D. O’Shea, Using Algebraic Geometry, Graduate
Texts in Mathematics 185, Springer, New York, 1998.
[5] G.D. Forney, Minimal bases of rational vector spaces, with applications
to multivariable linear systems, SIAM Journal on Control, vol. 13, pp.
493–520, 1975.
[6] F.R. Gantmacher, Theory of Matrices, Chelsea, New York, 1959.
[7] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials, Academic
Press, New York, 1982.
[8] I. Gohberg, P. Lancaster, and L. Rodman, Invariant Subspaces of Matrices
with Applications, Wiley, New York, 1986 and SIAM, Philadelphia,
2006.
402 Juan C. Z´u˜niga–Anaya
[9] B. Hartley and T.O. Hawkes, Rings, Modules and Linear Algebra, Chapman
and Hall, London, 1970.
[10] T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, 1980.
[11] N. Karampetakis and S. Vologiannidis, Infinite elementary divisor structure
preserving transformations for polynomial matrices, Int. J. Appl.
Math. Comput. Sci. vol. 13, pp. 493–503, 2003.
[12] V. Kuˇcera, Discrete Linear Control: The Polynomial Equation Approach,
John Wiley and Sons, Chichester, 1979.
[13] V. Kuˇcera, Diophantine equations in control–a survey, Automatica, vol.
29, pp. 1361–1375, 1993.
[14] P. Lancaster, Linearization of regular matrix polynomials, Electronic
Journal of Linear Algebra, vol. 17, pp. 21–27, 2008.
[15] J. J. Loiseau, Sur la modification de la structure `a l’infini par un retour
d’´etat statique, SIAM J. Control Optim., vol. 26, pp. 251–273, 1988.
[16] C.C. MacDuffee, The Theory of Matrices, Chelsea, New York, 1952.
[17] B. McMillan, Introduction to formal realizability theory, Bell System
Tech. J., vol. 31, pp. 217–219, 541–600, 1952.
[18] A. S. Morse, Structural invariants of linear multivariable systems, SIAM
J. Control Optim., vol. 11, pp. 446–465, 1973.
[19] W. H. L. Neven and C. Praagman, Column reduction of polynomial
matrices, Linear Algebra Appl., vol. 188, pp. 569–589, 1993.
[20] J. W. Polderman and J. C. Willems, Introduction to Mathematical Systems
Theory: a Behavioral Approach, Springer-Verlag, 1998.
[21] H.H. Rosenbrock, State-space and Multivariable Theory, John Wiley,
New York, 1970.
[22] H.J.S. Smith, On systems of linear indeterminate equations and congruences,
Philosophical Transactions of the Royal Society, vol. 151, pp.
293–326, 1861.
[23] H.J. Stetter, Numerical Polynomial Algebra, SIAM, Philadelphia, 2004.
[24] P. M. Van Dooren, The computation of Kronecker’s canonical form of a
singular pencil, Linear Algebra Appl. vol. 27, pp. 103–140, 1979.
Structural Properties of Polynomial and Rational Matrices, a survey 403
[25] P. M. Van Dooren and P. Dewilde, The Eigenstructure of an Arbitrary
Polynomial Matrix. Computational Aspects, Linear Algebra Appl., vol.
50, pp. 545–580, 1983.
[26] A.I.G. Vardulakis, Linear Multivariable Control, JohnWiley, Chichester,
UK, 1991.
[27] W.A. Wolovich, Linear Multivariable Systems, Springer Verlag, 1974.
[28] W. M. Wonham and A. S. Morse, Decoupling and pole assignment in
linear multivariable systems: A geometric approach. SIAM J. Control
Optim. vol. 8, pp. 1–18, 1970.
[29] J.C. Z´u˜niga Anaya and D. Henrion, An improved Toeplitz algorithm
for polynomial matrix null-space computation, Appl. Mathematics and
Comp., vol. 207, pp. 256–272, 2009.
Thank you for copying data from http://www.arastirmax.com