Journal Name:
- Mathematica Æterna
Publication Year:
- 2012
Key Words:
Author Name | University of Author | Faculty of Author |
---|---|---|
- 6
- English
REFERENCES
[1] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings
without continuity in cone metric spaces, Journal ofMathematical Analysis
and Applications, 341 (2008), 416–420.
[2] M. Abbas and B. E. Rhoades, Fixed and periodic point results in cone metric
spaces, Applied Mathematics Letters, 22 (2008), 511–515.
[3] M. Abbas and B. E. Rhoades, Common fixed point results for noncommuting
mappings without continuity in generalized metric spaces, Appl. Math. and
Computation, 215 (2009), 262–269.
[4] M. Abbas and B. E. Rhoades, Common fixed points for four maps in cone
metric spaces, Applied Mathematics and Computation, 216 (2010), 80–86 .
[5] M. Abbas, M.A. Khan and S. Radenovi´c, Common coupled fixed point theorems
in cone metric spaces for w-compatible mapping, Applied Mathematics
and Computation, (2010), doi:10.1016/j.amc.2010.05.042.
[6] T. Abdeljawad and E. Karapinar, Quasicone metric spaces and generalizations
of Caristi Kirk’s theorem, Fixed Point Theory and Applications, (2009),
doi:10.1155/2009/574387.
[7] A. Amini-Harandi and M. Fakhar, Fixed point theory in cone metric spaces
obtained via the scalarization, Computers and Mathematics with Applications,(
2010) ,doi:10.1016/j.camwa.2010.03.046.
[8] A. Azam, M. Arshad and I. Beg, Banach contraction principle on cone rectangular
metric spaces, Appl. Anal. Discrete Math., 3 (2009), 236–241.
[9] A. Beiranvand, S.Moradi,M. Omid and H. Pazandeh, Two fixed point theorem
for special mapping, arXiv:0903.1504v1[math.FA], (2009).
[10] A. Branciari, A fixed point theorem of Banach-Caccippoli type on a class of
generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37.
[11] L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of
contractive mappings, Journal of Mathematical Analysis and Applicaions,
332(2), (2007), 1468–1476.
[12] X. Huang, C. Zhu and Xi. Wen, A common fixed point theorem in cone metric
spaces, International Journal of Mathematical Analysis, 4(15) (2010), 721–
726.
[13] D. Ili´c and V. Rakocevi´c, Common fixed points for maps on cone metric space,
Journal of Mathematical Analysis and Applications, 341 (2008), 876– 882.
Some Fixed Point Theorems in Cone Rectangular Metric Spaces 585
[14] G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly., 73
(1976), 261–263.
[15] G. Jungck, Compatiblemappings and common fixed points, International Journal
of Mathematics and Mathematical Seiences, 9 (1986), 771–779.
[16] G. Jungck and B.E. Rhoades, Fixed Points for set valued functions without
continuity, Indian J. Pure Appl. Math., 29 (1998), 227–238.
[17] Z. Kadelburg, M. Pavlovic and S. Radenovi´c, Common fixed point theorems
for ordered contractions and quasicontractions in ordered cone metric spaces,
Computers and Mathematics with Applications, 59 (2010) ,3148–3159.
[18] E. Karapinar, Couple fixed point theorems for nonlinear contractions in
cone metric spaces, Computers and Mathematics with Applications,(2010),
doi:10.1016/j.camwa.2010.03.062.
[19] E. Karapinar, Fixed point theorems in cone Banach spaces, Fixed Point Theory
and Applications, (2009) Article ID 609281 doi:10.1155/2009/609281.
[20] S. Moradi, Kannan fixed-point theorem on complete metric spaces
and on generalized metric spaces depend on another function,
arXiv:0903.1577v1[math.FA], (2009) .
[21] J. R. Morales and E. Rojas, Cone metric spaces and fixed point theorems of
T-Kannan contractive mappings, Int. Journal of Math. Analysis, 4(4) (2010),
175–184.
[22] J. R. Morales and E. Rojas, T -Zamfirescu and T -weak contraction mappings
on cone metric spaces, arxiv:0909.1255v1.[math.FA], (2009) .
[23] H.K. Pathak, Fixed point theorems for weak compatible multi-valued and
single-valued mappings, Acta Math. Hungar., 67(1-2) (1995), 69–78.
[24] Sh. Rezapour and R. Hamlbarani, Some notes on the paper cone metric spaces
and fixed point theorems of contractive mappings, Journal of Mathematical
Analysis and Applications., 347 (2008), 719–724.
[25] F. Sabetghadam, H. P. Masiha and A. H.Sanatpour, Some coupled fixed point
theorems in cone metric spaces, Fixed point Theory and Applications,(2009)
Article ID 125426 8 p.
[26] S. Sessa, On a weak commutativity condition of mappings in fixed point considerations,
Publ. Inst. Math. (Beograd)(N.S.), 32 (1982), 149–153 .
[27] W. Shatanawi, Some common coupled fixed point results in cone metric spaces,
International Journal of Mathematical Analysis, 4 (2010), 2381–2388.
586 R. A. Rashwan and S. M. Saleh
[28] G. Song, X. Sun, Y. Zhao, G. Wang, New common fixed point theorems
for maps on cone metric space, Applied Mathematics Letters, (2010),
doi:10.1016/j.aml.2010.04.0320.
[29] R. Sumitra, V. Rhymend Uthariaraj and R. Hemavathy, Common fixed point
theorem for T-Hardy-Rogers contraction mapping in a cone metric space, International
Mathematical Forum, 5(30) (2010), 1495–1506.
[30] D. Turkoglu, M. Abuloha and T. Abdeljawad, KKM mappings in cone metric
spaces and some fixed point theorems, Nonlinear Analysis, Theory, Methods
and Applications, 72(1) (2010), 348–353.