You are here

BAZI KÜLTÜR BİTKİLERİNDE ARTAN TUZ TOLERANSINA MOLEKÜLER VE BİYOTEKNOLOJİK YAKLAŞIMLAR

MOLECULAR AND BIOTECHNOLOGICAL APPROACHES TO INCREASE SALT TOLERANCE IN SOME CROP PLANTS

Journal Name:

Publication Year:

DOI: 
10.22531/muglajsci.286569
Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Salinity is the most important abiotic stress factor limiting the plant development and production. Soil salinity is a principal constraint in food production. Particularly, it is a problem in the arid and semi- arid areas of the world. Recent biotechnological approaches and molecular markers technology studies have contributed greatly to a better understanding of the genetic and molecular bases of plant salt stress tolerance. The development of molecular studies and in vitro selection technology will provide a new opportunity to improve in salt tolerant crops. The genetic and genomic analysis of the traits of plants can contribute to the breeding of salt tolerant crops through DNA molecular markers associated to salt stress resistance. In this review, use of in vitro culture methods for increasing salt tolerance in crop plants and also molecular marker and genetic engineering studies were evaluated.
Abstract (Original Language): 
Tuzluluk, bitki gelişimini ve üretimini sınırlayan en önemli abiyotik stres faktörüdür. Toprak tuzluluğu, gıda üretiminde kısıtlayıcı faktördür. Özellikle, toprak tuzluluğu, dünyanın kurak ve yarı kurak alanlarında önemli bir problemdir. Yeni biyoteknolojik yaklaşımlar ve moleküler markör teknolojisi tuz stres toleransının genetik ve moleküler temelinin daha iyi anlaşılmasına büyük katkı sağlamıştır. Tuza dayanıklı bitkileri geliştirmede moleküler çalışmalar ve in vitro seleksiyon teknolojisinin geliştirilmesi yeni bir fırsat sağlayacaktır. Tuz stresi direnciyle ilişkili DNA moleküler markörlerini tanımlamak için genetik ve genomik analizlerin kullanımı, tuza dayanıklı bitki gelişiminde ıslah stratejilerini kolaylaştırabilir. Bu derlemede, bazı bitkilerde tuz toleransını artırmak için yapılmış in vitro kültür yöntemleri ve aynı zamanda moleküler markör ve genetik mühendisliği çalışmaları değerlendirilmiştir.
73
85

REFERENCES

References: 

[1]. Gu rel, A. and Avcıoğ lu, R., "Bitkilerde Strese Dayanıklılık Fizyolojisi", Ö zcan S, Gu rel E., Babaoğ lu M. (ed) Bitki Biyoteknolojisi II. Genetik Mühendisliği ve Uygulamaları, Selçuk Ü niversitesi Basımevi, Konya, s.288-326, (2001).
[2]. Rosa M. P.- C. and Aurelio, G. C., "In vitro Tissue Culture, a Tool for the study and breedinğ of plants Subjected to abiotic stress conditions" (http://creativecommons.orğ/licenses/by/3.0),INTECH (2012).
[3]. Djilianov, D., Els, P.,, Öden, S., Önckelen, H.V., Mu ller, J., "Nodulation under salt stess of alfalfa lines obtained after in vitro selection for osmotic tolerance", Plant Science 165: 887-894, (2003).
[4]. Seeaman, J., "Mechanisms of salt tolerance in halophytes: can crop plants resistance to salinity be improved"http://www.shef.Ac.Ük./aps/mbiolsci/jeni/dissertation.pdf. (2004).
[5]. Liua, P,, Baob, W., "Cell types in the wild type callus of rice (Oryza sativa L.) as revealed by screeninğ for salt tolerant lines with selection pressure", Plant Science 131 195-202, (1998).
[6]. Nabors, M.W., Daniels, A., Nadolny, L., Brown, C., "Sodium chloride tolerant lines of tobacco cells". Plant Science Letters, vol 4(3):155-159, (1975).
[7]. Chandler, S.F. and Thorpe, T.A. "Variation from plant tissue cultures: Biotechnoloğical application to improvinğ salinity tolerance", Biotechnology Advances vol: 4(1):117-135, (1986).
[8]. Yosida, K., "Plant Biotechnoloğy Genetic Enğineerinğ to Enhance Plant Salt Tolerance", Journal of Bioscience and Bioengineering (Rewiev), vol:94(6)585-590,(2002)
[9]. Bu ru n, B., "Somaklonal Varyasyon", Babaoğ lu M, Gu rel E, Ö zcan S.(ed).Bitki Biyoteknolojisi, I. Doku Kültürü
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Gene Discovery Genetic Engineering Transgenics Genomic Selection MAS Osmotic adjusment of a selective cultivar Abiotic stress -tolerant rice for evaluation QTL/physical mapping Map-based cloning cDNA cloning Functional genomics Microarray Proteomics Conventional breeding Adaptive cultivars
Filiz Altan
Mugla Journal of Science and Technology, Vol 3, No 1, 2017, Pages 73-85
80
ve Uygulamaları, Selçuk Ü niversitesi Basımevi, Konya, s.345-367, (2001).
[10]. Rahman, M.H., Krishnaraj, S., Thorpe, T.A. "Selection for salt tolerance in vitro usinğ microspore-derived embryos of Brassica napus cv. Topas, and the characterization of putative tolerant plants", In Vitro Cellular and Developmental Biology Plant, 31116-121, (1995).
[11]. Barakat, M.N., Abdel-Latif, T.H., "In vitro selection of wheat callus tolerant to hiğh levels of salt and plant reğeneration", Euphytica,91 127-140, (1996).
[12]. Ganğopadhyay, G., Basu, S., Mukherjee, B.B., Gupta, S., "Effects of salt and osmaric shocks on unadapted and adapted callus lines of tobacco". Plant Cell, Tissue and Organ Culture, 49: 45-52, (1997).
[13]. Ganğopadhyay, G., Basu, S., Gupta, S.. "In vitro selection and physioloğical characterization of NaCl- and mannitol-adapted callus lines in Brassica juncea", Plant Cell Tissue and Organ Culture. 1997; 50 161-169, (1997).
[14]. Patnaik, J., Debata, B., "In vitro selection of NaCl Tolerant callus lines of Cymbopogon martinii (Roxb.) Wats" Plant Science 124: 203-210, (1997).
[15]. Cano, E.A., Perz- Alfocea, F., Moreno, V., Caro, M., Bolarin, M.C., "Evaluation of salt tolerance in cultivated and wild tomato species throuğh in vitro shoot apex culture", Plant Cell, Tissue and Organ Culture, 53: 19-26. (1998).
[16]. Shah, S.H., Tobita, S., Shono, M., "Cation co- tolerance phenomenon in cell cultures of Oryza sativa adapted to LiCl and NaCl", Plant Cell, Tissue and Organ Culture, 71: 95-101,(2002).
[17]. Gonzales- Rosas, H., Salazar- Garcia, S., Ramirez- Reyes, G., Rodriğuez- Öntiveros, J.L., Ramos- Villasenor, A.C., "Preliminary results on in vitro selection for to chloride excess in Avacado. Revista Chapinğo Serie" Horticultura 9(1):39-43, (2003).
[18]. Zair, I,, Chlyah, A., Sabounji, K., Tittahsen, M., Chlyah, H., "Salt tolerance improvement in some wheat cultivars after application of in vitro selection pressure", Plant Cell, Tissue and Organ Culture, 73: 237- 244, (2003).
[19]. Zhu, G.Y., Kinet, J.M., and Lutts, S. "Characterisation of rice (Oryza sativa) F3 populations selected for salt resistance. 2. Relationships between yield- related parameters and physioloğical properties", Australian Journal of Experimental Agriculturae, 44(3):333-342, (2004).
[20]. Gandonou, C.B., Errabii, T., Abrini, J., Idaomar, M., Senhaji, N.S., "Selection of callus cultures of suğarcane (Saccharum sp.) tolerant to NaCl and their response to salt stress", Plant Cell Tissue and Organ Culture, 87 9-16, (2006).
[21]. Queiros, F., Fdalğo, F., Santos, I., Salema, R., "In vitro selection of salt tolerant cell lines in Solanum tuberosum L. biol. "Plant 51: 728-734. (2007).
[22]. Hossain, Z., Mandal, A.K.A., Datta, S.K., Biswas, A.K., "Development of NaCl tolerant line in Chrysanthemum morifolium Ramat. throuğh shoot orğanoğenesis of selected callus line".Journal of Biotechnology, 129 658-667, (2007).
[23]. Koc, N.K., Bas, B., Koc, M., Kusek, M., "Investiğations of in vitro selection for salt tolerant lines in sour oranğe (Citrus aurantium L.) ". Biotechnology, 8 155-159, (2009).
[24]. He, S., Han, Yi, Wanğ, Yi, Zhai, Hi, Liu, Q., "In vitro selection and identification of sweetpotato (Ipomoea batatas (L.) Lam.) plants tolerant to NaCl", Plant Cell Tissue and Organ Culture, 96: 69-74. (2009).
[25]. Rai,M.K., Kalia, R.K., Sinğh, R., Ganğola, M.P., Dhawan, A.K., "Developinğ stress tolerant plants throuğh in vitro selection—An overview of the recent proğress". Environmental and Experimental Botany 71: 89-98, (2011).
[26]. Ben- Hayyim, G., Kochba, J. "Growth characteristics and stability of tolerance of citrus cells subjected to NaCl stress", Plant Science Letters vol. 27(1) 87-94, (1982).
[27]. Dutta, Gupta, S., Auğe, R. M., Denchev, P.D., and Conğer B.V., "Growth, proline accumulation and water relations of NaCl- selected and non- selected callus lines of Dactylis glomerata L. " Environmental and Experimental Botany vol 35(1):83-92, (1995).
[28]. Winicov, I., "Characterization of rice (Oryza sativa L.) plants reğenerated from salt tolerant cell lines", Plant Science Vol 113 (1) 105-111, (1996).
[29]. Basu, S., Ganğopadhyay, G., Mukherjee, B.B., Gupta, S., "Plant reğeneration of salt adapted callus of indica rice (var. Bamati 370) in saline conditions", Plant Cell, Tissue and Organ Culture 50: 153-159, (1997).
[30]. Lutts, S., Kinet, J.M., "Bouharmont J Improvement of rice callus reğeneration in the presence of NaCl", Plant Cell, Tissue Organ Culture 57: 3-11, (1999).
[31]. Mandal, A.B., Pramanik, S.C., "Chowdhury B, Bandyopadhyay AK Salt-tolerant Pokkali somaclones: performance under normal and saline soils in Bay Islands", Field Crops Researces 61: 13-21, (1999).
[32]. Arzani, A., Mirodjağh, S.S., "Response of durum wheat cultivars to immature embryo culture, callus induction and in vitro salt stress". Plant Cell, Tissue and Organ Culture 58(1) 67-72, (1999).
[33]. Peleğrineschi, A., Brito, R.M., Mclean, S., Hoisinğton, D., "Effect of 2,4- dichlorophenoxyacetic acid NaCl on the establisment of callus and plant reğeneration in durum and bread wheat". Plant Cell, Tissue and Organ Culture 77: 245-250, (2004).
[34]. Öchatt, S.J., Marconi, P.L., "Radice S, Arnozis PA, Caso ÖH In vitro recurrent selection of potato: production and characterization of salt tolerant cell lines and plants", Plant Cell, Tissue and Organ Culture 55: 1-8,(1999).
[35]. Zhanğ, B.H., Liu, F., Zhanğ, W.S., Wanğ, Q.L., "Selection for salt tolerance in cotton tissue culture and plant reğeneration from NaCl-tolerant embriyonic callus", Israel Journal of Plant Scineces, vol 49(3) 187-192, (2001).
[36]. Alvarez, I., Tomaro, M.L.., Benavides, M.P., "Chanğes in polyamines, proline and ethylene in sunflower calluses treated with NaCl", Plant Cell, Tissue and Organ Culture 74: 51-59,(2003).
[37]. Caboni, E., Anselmi, S., Donato, E., Manes, F., "In vitro Selection of Actinidia Deliciosa clones tolerant to NaCl and their molecular and In vivo Ecophysioloğical
Filiz Altan
Mugla Journal of Science and Technology, Vol 3, No 1, 2017, Pages 73-85
81
Characterisation", ISHS Acta Horticulturae 618: XXVI International Horticultural Conğress",Enviromental Stress and Horticulturae Crops. (2003).
[38]. Shah, S.H., Wainwriğht, S.J,, Merrett, M.J., "Cation cotolerance in callus cultures of Medicago sativa L. tolerant to sodium chloride", Plant Science vol:89,81-84, (1993).
[39]. Chaudhary, M.T., Wainwriğht, S.J., Merrett, M.J., Alam, Md. S-E., "Salt tolerant plants of Lucerne (Medicago meda Pers.) reğenerated from salt-selected suspension culture", Plant Science vol:98 (1):97-102. (1994).
[40]. Chaudhary MT, Wainwriğht SJ, Merrett MJ Comparative NaCl tolerance of Lucerne plants reğenerated from salt-selected suspension cultures. Plant Science vol:114(2):221-232. (1996).
[41]. Shah S. H., Tobita S., Shono M. Cation co- tolerance phenomenon in cell cultures of Oryza sativa adapted to LiCl and NaCl. Plant Cell, Tissue and Örğan Culture, 71: 95-101. (2002).
[42]. Garratt, L.C., Janağoudar, B.S., Lowe, K.C., Anthony, P., Power, J.B., Davey, M.R., "Salinity tolerance and antioxidant status in coton culture free radical", Biology&Medicine, 33(4):502-511, (2002).
[43]. Gu, R., Liu, Q., Pei, D., Jianğ, X., " Ünderstandinğ saline and osmmotic tolerance of Populus euphratica suspended cells", Plant Cell, Tissue and Organ Culture ,78: 261-265, (2004).
[44]. Dorion, N., Wies, N., Burteaux, A., Biğot, C., "Protoplast and leaf explant culture of Lycopersicon cheesmanii and salt tolerance of protoplast- derived calli", Plant Cell, Tissue and Organ Culture 56: 9-16. (1999).
[45]. Senadhira, D., Zapata- Arias, F.J., Greğorio, G.B., Alejar, M.S., de la Cruz, H.C., Padolina, T.F., Galvez, A.M., "Develpment of the first salt–tolerant rice cultivar throuğh indica/indica anther culture"., Fields Crops Research, 76: 103-110, (2002).
[46]. Lee, S.Y., Lee, J.H., Kwon, T.Ö., "Selection of salt–tolerant doubled haploids in rice anther culture",Plant Cell, Tissue and Organ Culture ,74: 143-149, (2003).
[47]. Martinez CA, Maestri M and Lani Elisonete G In vitro salt tolerance and proline accumulation in Andean potato (Solanum spp.) differinğ in frost resistance. Plant Science vol:116 (2):177-184. (1996).
[48]. Mercado, J.A., Sancho- Caarroscosa, M.A., Jiminez- Bermudez, S., Peran- Quesada. R., Plieğo- Alfaro, F., Quesada, M.A., "Assessment of in vitro ğrowth of apical stem sections and adventitious orğanoğenesis to evaluate salinity tolerance in cultivated tomato", Plant Cell, Tissue and Organ Culture, 62: 101-106, (2000).
[49]. Mills, D., Tal, M., "The effect of ventilation on in vitro response of seedlinğs of the cultivated tomato and its wild salt- tolerant relative Lycopersicopon pennellii to salt stress", Plant Cell, Tissue and Organ Culture, vol: 78(3)209-216, (2004).
[50]. Brawley, J. and Mathes, M.C., "The influence of NaCl on the ğrowth of enğlish ivy (Hedera helix) cuttinğs and callus tissue", Environmental and Experimental Botany vol.30 43-47, (1990).
[51]. Yasumato, E., Adachi, K., Kato, M., sano, H. ,Sasamoto, H., Baba, S., Ashıhara, H., "Üptake of Inorğanic Ions and compatıble Solutes in Cultured Manğrove Cells Durinğ Salt Strees", In vitro Cellular& Developmental Biooloğy. 35(1): 82-85, (1999).
[52]. Li, X., Seliskar, D. M., Moğa, J.A., Gallağher, J.L., " Plant reğeneration from callus cultures of salt marsh hay. Spartina patens, and its cellular based salt tolerance", Aquatic Botany vol 51 (1-2) p. 103-113, (1995).
[53]. Ehsanpour, A.A., Fatahian, N., "Effects of salt and proline on Medicago sativa callus". Plant Cell, Tissue and Organ Culture, 73: 53-56, (2003).
[54]. Ürechean, V., "The Influence of stresss induced by NaCl on morphoğenetic aspects of the callus initiated from immature maize embryos". Bulg. J. Plant Physiol 336-352, (2003).
[55]. Zhanğ, F., Yanğ, Y.L., He, W.L., Zhao, X, and Zhanğ, L.X., "Effects of salinity on ğrowth and compatible solutes of callus induced from Populus euphratica". In Vitro Cell Dev Biol Plant, 40: 491–494, (2004).
[56]. Wanğ, H., Lianğ, X., Wan, Q., Wanğ, .X, "Bi Ethylene and nitric oxide are involved in maintaininğ ion homeostasis in Arabidopsis callus under salt stress. Planta, 230:293–307, (2009).
[57]. Lokhande, H.L., Nikam, T.D., Patade, V.Y., Ahire, M.L., "Suprasanna P Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro ğrowth responses in Sesuvium portulacastrum L. ", Plant Cell Tiss Organ Cult,104: 41-49, (2011).
[58]. El Sayed, H., El Sayed, A., "Isolation and characterization of NaCl resistant callus culture of field pea (Pisum sativum L.) to salinity", Agric. Biol. J. N. Am, 2(6):964-973, (2011).
[59]. Benderradji, L., Brini, F., Kellou, K., Ykhelf, N., Djekoun, A., Masmoudi, K., Bouzerour, H., "Callus induction, proliferation, and plantlets reğeneration of two bread wheat (Triticum aestivum L.) ğenotypes under saline and heat stress conditions", ISRN Ağronomy, Article ID 367851. Ahmad, P., Azooz, M. M. and Prasad, M. N. V. Salt Stress in Plants: Siğnallinğ, Ömics and Adaptations, DÖI 10.1007/978-1-4614-6108-1_18, © Sprinğer Science+Business Media New York , pp 465-495,(2012).
[60]. Terletskaya, N., Khailenko, N., "Tissue Culture in vitro as a Model System for Studyinğ the Effects of Abiotic Stresses on Different Species of Wheat" Advances in Environmental Technology and Biotechnology, ISBN: 978-960-474-384-1,(2014) .
[61]. Kripkyy, Ö., Kerkeb, L., Molina, A., Belver, A., Rodrı ğuez-Rosales, M.P., Donaire, J.P., "Effects of salt-adaptation and salt-stress on extracellular acidification and microsome phosphohydrolase activities in tomato cell suspensions",Plant Cell Tissue and Organ Culture 66: 41–47, (2001).
[62]. Duran, R.E., Savaskan, C., "Salinity tolerance of durum wheat ğenotypes in androğenesis"., Gazi Üniv. J. Sci. 24: 657–662,(2011).
Filiz Altan
Mugla Journal of Science and Technology, Vol 3, No 1, 2017, Pages 73-85
82
[63]. Al-Ashkar, I.M., "Anther culture response and salt tolerance in some wheat ğenotypes", Annals of Agricultural Science 58(2):139–145, (2013).
[64]. Woodward, A.J., Bennett, I.J., "The effect of salt stressand abscisic acidon proline production, chlorophyll content and ğrowth of in vitro propağated shoots of Eucalyptus camaldulensis. Plant Cell Tissue and Organ Culture; 82 189-200, (2005).
[65]. Nyman, L.P., Arditti, J. and Bradley, T.J., "Örğanic and inorğanic contituents of salt tolerant taro (Colocasia esculenta var Antiquorum) tissue cultured in saline media", Environmental and Experimental Botany, vol 29(4):423-432, (1989).
[66]. Roy, S.J., Neğrao, S., Tester, M., "Salt resistant crop plants", Current Opinion in Biotechnology, 26: 115-124, (2014).
[67]. Bressan, R.A., Bohnert, H.J., Haseğawa, P.M., "Genetic Enğineerinğ for Salinity Stress Tolerance". Advances in Plant Biochemistry and Molecular Biology, vol 1: 347-384, (2008).
[68]. Badawi, G.H., Kawano, N., Yamauchi, Y., Shimada, E., Sasaki, R., Kubo, A., Tanaka, K., "Över-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit", Physiol Plant 121:231-238, (2004).
[69]. Weinl, S., Kudla, J., "The CBL-CIPK Ca2+-decodinğ siğnalinğ network: function and perspectives", New Phytol 184:517-528, (2009).
[70]. Qiu, Q.S., Guo, Y., Dietrich, M.A., Schumaker, K.S., Zhu, J.K., "Reğulation of SÖS1, a plasma membrane Na+/H+ exchanğer in Arabidopsis thaliana, by SÖS2 and SÖS3. Proc Natl Acad Sci USA 99: 8436-8441, (2002).
[71]. Mazel, A., Leshem, Y., Tiwari, B.S., Levine, A., "Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle traffickinğ protein AtRab7 (AtRabG3e)", Plant Physiol. 134, 118–128, (2004).
[72]. Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamağuchi-Shinozaki, K., Shinozaki, K., "Antisense suppression of praline değradation improves tolerance to freezinğ and salinity in Arabidopsis thaliana. FEBS Lett. 461: 205–210, (1999).
[73]. Zhanğ, H.X., Blumwald, E., "Transğenic salt-tolerant tomato plants accumulate salt in foliağe but not in fruit", Nat. Biotech. 19: 765–768, (2001).
[74]. Zhanğ, H.X., Hodson, J.N., Williams, J.P., Blumwald, E.,"Enğineerinğ salt tolerant Brassica plants: characterization of yield and seed oil quality in transğenic plants with increased vacuolar sodium accumulation", Proc. Natl. Acad., Sci.,USA 98: 12832-12836, (2001).
[75]. Hayashi, H., Alia, Mustardy, L., Deshnium, P., Ida, M., Murata, N., "Transformation of Arabidopsis thaliana with the coda ğene for choline oxidase; accumulation of ğlycinebetaine and enhanced tolerance to salt and cold stress" ,Plant J. 12: 133–142. (1997).
[76]. Veena- Reddy, V.S., Sopory, S.K., "Glyoxalase I from Brassica juncea, molecular cloninğ, reğulation and its over-expression confer tolerance in transğenic tobacco under stress", Plant J. 17, 385–395, (1999).
[77]. Batisticˇ, Ö., Kudla, J., "Analysis of calcium siğnalinğ pathways in plants", Biochim Biophys Acta, 1820:1283-1293, (2012).
[78]. Roxas, V.R., Smiğh, R.K., Jr Allen, E.R., Allen, R.D., "Överexpression of ğlutathione-Stransferase/ğlutathione peroxidase enhances the ğrowth of transğenic tobacco seedlinğs durinğ stress". Nat. Biotechnol, 15: 988–991, (1997).
[79]. Holmstrom, K.Ö., Somersalo, S., Mandal, A., Palva, T.E., Welin, B., "Improved tolerance to salinity and low temperature in transğenic tobacco producinğ ğlycine betaine", J. Exp. Bot. 51: 177–185, (2000).
[80]. Tarczynski, M., Jensen, R.G., Bohnert, H.J., "Stress protection of transğenic tobacco by production of the osmolyte mannitol", Science 259, 508–510, (1993).
[81]. Shen, B., Jensen, R.G., "Bohnert HJ Mannitol protects ağainst oxidation by hydroxyl radicals" Plant Physiol, 115: 527–532, (1997).
[82]. Karakas, B., Özias-Akins, P., Stushnoff, C., Suefferheld, M., Rieğer, M., "Salinity and drouğht tolerance of mannitol-accumulatinğ transğenic tobacco", Plant Cell Environ 20: 609-616, (1997).
[83]. Nakayama, H., Yoshida, K., Öno, H., Murooka, Y., Shinmyo, A., "Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells", Plant Physiol.122, 1239–1247, (2000).
[84]. Vendruscolo, E.C.G., Schuster, I., Pileğği, M., "Scapim CA, Molinari HBC, Marur CJ, Vieira LGE Stress-induced synthesis of proline confers tolerance to water deficit in transğenic wheat", J Plant Physiol, 164:1367-1376. (2007).
[85]. Sheveleva, E., Chmara, W., Bohnert, H.J.,Jensen, R.G., "Increased salt and drouğht tolerance by D-ononitol production in transğenic Nicotiana tabacum L. Plant Physiol. 115:1211-1219, (1997).
[86]. Jeonğ, M.J., Park SC, Byun MÖ Improvement of salt tolerance in transğenic potato plants by ğlyceraldehyde-3-phosphate dehydroğenase ğene transfer. Mol. Cell 12, 185–189, (2001).
[87]. Romero, C., Belle´ s, J., Vaya´, J., Serrano, R., Culia´ n˜ ez-Macia,` F., "Expression of the yeast trehalose-6-phosphate synthase ğene in transğenic tobacco plants: pleiotropic phenotypes include drouğht tolerance", Planta 201:293-297. (1997).
[88]. Mukhopadhyay, A., Vij, S., Tyaği, A.K., "Överexpression of a zinc-finğer protein ğene from rice confers tolerance to cold, dehydration, and salt stress in transğenic tobacco", Proc. Natl. Acad. Sci. USA 101: 6309–6314, (2004).
[89]. Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., Izui, K., "Över-expression of a sinğle Ca2-dependent protein kinase confers both cold and salt/drouğht tolerance on rice plants", Plant J. 23, 319–327, (2000).
[90]. Ferjani, A., Seğami, S., Horiğuchi, G., Muto, Y., Maeshima, M., Tsukaya, H., "Keep an eye on PPi: the vacuolar-type H+- pyrophosphatase reğulates
Filiz Altan
Mugla Journal of Science and Technology, Vol 3, No 1, 2017, Pages 73-85
83
postğerminative development in Arabidopsis", Plant Cell 23: 2895-2908, (2011).
[91]. Cortina, C., Culia´ n˜ ez-Macia`, F.A., "Tomato abiotic stress enhanced tolerance by trehalose biosynthesis". Plant Sci, 169: 75-82, (2005).
[92]. Ren, Z.H., Gao, J.P., Li, L.G., Cai, X.L., Huanğ, W., Chao, D.Y., Zhu, M.Z., Wanğ, Z.Y., Luan, S., Lin, H.X., " A rice quantitative trait locus for salt tolerance encodes a sodium transporter" Nat Genet 37: 1141-1146, (2005).
[93]. Park, J.M., Park, C.J., Lee, S.B., Ham, B.K., Shin, R., Paek, K.H., "Överexpression of the tobacco Tsi1 ğene encodinğ an EREBP/AP2-type transcription factor enhances resistance ağainst pathoğen attack and osmotic stress in tobacco", Plant Cell, 13: 1035–1046, (2001).
[94]. Ellul, P., Rios, G., Atares, A., Roiğ, L. A., Serrano, R., Moreno, V., "The expression of the Saccharomyces cerevisiae HAL1 ğene increases salt tolerance in transğenic watermelon [Citrullus lanatus (Thunb.) Matsun. & Nakai.]", Theor. Appl. Genet, 107, 462–469. (2003).
[95]. Gisbert, C., Rus, A. M., Bolarin, M. C., Lopez-Coronado, J. M., Arrillağa, I., Montesinos, C., Caro, M., Serrano, R., Moreno, V., "The yeast HAL1 ğene improves salt tolerance of transğenic tomato", Plant Physiol, 123, 393–402, (2000).
[96]. Pardo, J.M., Reddy, M. P., Yanğ, S., Mağğio, A., Huh, G.H., Matsumoto, T., Coca, M.A., Paino-D’Ürzo, M., Koiwa, H., Yun, D.J., Watad, A. A., Bressan, R. A., et al. "Stress siğnalinğ throuğh Ca2/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proc. Natl. Acad. Sci. ÜSA 95: 9681–9686. (1998).
[97]. Mian A, Öomen RJFJ, Isayenkov S, Sentenac H, Maathuis FJM, Ve´ ry A-A Över-expression of an Na+- and K+- permeable HKT transporter in barley improves salt tolerance", Plant J 68: 468-479, (2011).
[98]. Roy, S., Tucker, E. J., Tester, M., "Genetic analysis of abiotic stress tolerance in crops", Current Opinion in Plant Biology, 232-239, (2011).
[99]. Javid, M., Nicolas, M., and Ford, R., "Current Knowledğe in Physioloğical and Genetic Mechanisms Ünderpinninğ Tolerances to Alkaline and Saline Subsoil Constraints of Broad Acre Croppinğ in Dryland Reğions, Abiotic Stress in Plants - Mechanisms and Adaptations", Prof. Arun Shanker (Ed.), ISBN: 978-953-307-394-1, InTech, Available from: http://www.intechopen.com/books/abiotic-stress-in-plantsmechanisms-and adaptations/current-knowledğe-in-physioloğical-and-ğenetic mechanisms-underpinninğtolerances, (2011).
[100]. Siahsar, B. A., "Narouei M Mappinğ QTLs of physioloğical traits associated with salt tolerance in ‘Steptoe'x'Morex’ doubled haploid lines of barley at seedlinğ stağe", J. Food Agric. Environ, 8, 751–759, (2010).
[101]. Ma, L. Q., Zhou, E..F, Huo, N.X., Zhou, R.H., Wanğ, G.Y., Jia, J. Z., "Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.) ", Euphytica, 153:109–117, (2007).
[102]. Genc, Y., Öldach, K., Verbyla, A, Lott G, Hassan M, Tester M, Wallwork H, McDonald G Sodium exclusion QTL associated with improved seedlinğ ğrowth in bread wheat under salinity stress" Theoretical and Applied Genetics 121:877-894, (2010).
[103]. Thomson, M., de Öcampo, M., Eğdane, J., Rahman, M., Sajise, A., Adorada, D., Tumimbanğ-Raiz E, Blumwald, E., Seraj, Z., Sinğh, R., et al. "Characterizinğ the Saltol quantitative trait locus for salinity tolerance in rice",Rice 3: 148-160, (2010).
[104]. Ellis, R.P., Forster, B.P., Gordon, D.C. et al "Phenotype/ğenotype associations for yield and salt tolerance in a barley mappinğ population seğreğatinğ for two dwarfinğ ğenes", J Exp Bot 53: 1163–1176, (2002).
[105]. Ellis, R.P., Forster, B.P., Wauğh, R., et al "Mappinğ physioloğical traits in barley", New Phytol 137:149–157, (1997).
[106]. Mano, Y., Takeda, K., "Mappinğ quantitative trait loci for salt tolerance at ğermination and the seedlinğ stağe in barley (Hordeum vulgare L.)", Euphytica 94: 263–272, (1997).
[107]. Xue, D., Huanğ, Y., Zhanğ, X., et al, " Identification of QTLs associated with salinity tolerance at late ğrowth stağe in barley", Euphytica, 169:187–196, (2009).
[108]. Prasad, S., Bağali, P., Hittalmani, S., Shashidhar, H.E., "Molecular mappinğ of quantitative trait loci associated with seedlinğ tolerance to salt stress in rice (Oryza sativa L.) ", Current Science 78: 162-164, (2000).
[109]. Koyama, M.L., Levesley, A., Koebner, R.M.D., Flowers TJ, Yeo, A.R., "Quantitative trait loci for component physioloğical traits determininğ salt tolerance in rice", Plant Physiology, 125:406-422, (2001).
[110]. Ren, Z.H., Zhenğ, Z.M., Chinnusamy, V., Zhu, J.H., Cui, X.P., Iida, K., Zhu, J.K., " RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis ", Proc. Nat. Acad. Sci. U.S.A. 107, 5669–5674, (2010).
[111]. Galpaz, N., Reymond, M., "Natural variation in Arabidopsis thaliana revealed a ğenetic network controllinğ ğermination under salt stress", PLoS ONE 5, e15198; 1–10, (2010).
[112]. Quarrie, S.A., Steed, A., Calestani, C., Semikhodskii, A., Lebreton, C., Chinoy, C., Steele, N., Pljevljakusic´, D., Waterman, E., Weyen, J., et al, "A hiğh-density ğenetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Sprinğ x SQ1 and its use to compare QTLs for ğrain yield across a ranğe of environments", Theoretical and Applied Genetics ,110:865-880, (2005).
[113]. Gonğ, J.M., Zhenğ, X.W., Du, B.X., Qian, Q., Chen, S.Y., Zhu, L.H., He, P., "Comparative study of QTLs for ağronomic traits of rice (Oryza sativa L.) between salt stress and nonstress environment. Science in China Series C", Life Sciences, 44: 73-82, (2001).
[114]. Zhou, G., Johnson, P., Ryan, P.R., Delhaize, E., Zhou, M., "Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.) ", Mol. Breeding 29, 427–439, (2012).
[115]. Lin, H.X., Zhu, M.Z., Yano, M., Gao, J.P., Lianğ, Z.W., Su, W.A., Hu, Ren, Z.H., Chao, D.Y., "QTLs for Na+ and K+
Filiz Altan
Mugla Journal of Science and Technology, Vol 3, No 1, 2017, Pages 73-85
84
uptake of the shoots and roots controllinğ rice salt tolerance", Theor. Appl. Genet. 108, 253–260, (2004).
[116]. Lee, S.Y., Ahn, J.H., Cha, Y.S., Yun, D.W., Lee, M.C., Ko, J.C., Lee, K.S., "Eun MY Mappinğ QTLs related to salinity tolerance of rice at the younğ seedlinğ stağe", Plant Breeding 126, 43–46, (2007).
[117]. Zhanğ, G.Y., Guo, Y., Chen, S.L, Chen, S.Y., "RFLP tağğinğ of a salt tolerance ğene in rice", Plant Sci. 110:227-234, (1995).
[118]. Sabouri, H., Sabouri, A., "New evidence of QTLs attributed to salinity tolerance in rice", Afr. J. Biotechnol. 7, 4376–4383, (2008).
[119]. Byrt, C.S., Platten, J.D., Spielmeyer, W., James, R.A., Lağudah, E.S., Dennis, E.S., Tester, M., Munns, R., "HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1", Plant Physiology 143:1918-1928, (2007).
[120]. Genc, Y., Tester, M., McDonald, G.K. "Calcium requirement of wheat under saline and non-saline conditions", Plant Soi,l 327:331–345, (2010).
[121]. Pushparajan, N., Krishnasamy, V., Chandra Babu, R., Kannanbabu, J.R., "Association mappinğ of salinity tolerance in rice usinğ molecular markers", Int. J. Bioresour. Stress Manağ 2: 307–312, (2011).
[122]. Rivandi, J., Miyazaki, J., Hrmova, M., Pallotta, M., Tester, M., Collins, N.C. A., "SÖS3 homoloğue maps to HvNax4, a barley locus controllinğ an environmentally sensitive Na+ exclusion trait", J. Exp. Bot. 62, 1201–1216, (2011).
[123]. Shavrukov, Y., Gupta, N., Miyazaki, J., Baho, M., Chalmers, K., Tester, M., Lanğridğe, P., Collins, N., "HvNax3—a locus controllinğ shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum)", Functional & Integrative Genomics 10: 277-291, (2010).
[124]. Lindsay, M.P., Lağudah, E.S., Hare, R.A., Munns, R. "A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat", Functional Plant Biology 31: 1105-1114, (2004).
[125]. Ül, Haq, T., Gorham, J., Akhtar, J., Akhtar, N., Steele, K.A., "Dynamic quantitative trait loci for salt stress components on chromosome1 of rice", Functional Plant Biology 37: 634-645, (2010).
[126]. Huanğ, S.B., Spielmeyer, W., Lağudah, E.S., James, R.A., Platten, J.D., Dennis, E.S., Munns, R, "A sodium transporter (HKT7) is a candidate for Nax1, a ğene for salt tolerance in durum wheat", Plant Physiol. 142:1718–1727, (2006).
[127]. Dubcovsky, J., Marı´a, G.S., Epstein, E., Luo, M.C., Dvora´k, J., "Mappinğ of the K+/Na+ discrimination locus Kna1 in wheat", Theoretical and Applied Genetics, 92: 448-454, (1996).
[128]. Bonilla, P., Dvorak, J., Mackill, D., Deal, K., Greğorio, G., "RFLP and SSLP mappinğ of salinity tolerance ğenes in chromosome 1 of rice (Oryza sativa L.) usinğ recombinant inbred lines", Philipp. Agric. Sci. 85, 68–76, (2002).
[129]. Ren, Z.H., Gao, J.P., Li, L.G., Cai, X.L., Huanğ, W., Chao, D.Y., Zhu, M.Z., Wanğ, Z.Y., Luan, S., Lin, H.X., " A rice quantitative trait locus for salt tolerance encodes a sodium transporter", Nat. Genet. 37: 1141–1146, (2005).
[130]. Sabouri, H., Rezai, A.M., Moumeni, A., Kavousi, A., Katouzi, M., Sabouri, A., "QTLs mappinğ of physioloğical traits related to salt tolerance in younğ rice seedlinğs", Biol. Plant. 53, 657–662, (2009).
[131]. Alam, R., Rahman, M.S., Seraj, Z.I., Thomson, M.J., Ismail, A.M., Tumimbanğ-Raiz, E., Greğorio, G.B., "Investiğation of seedlinğ-stağe salinity tolerance QTLs usinğ backcross lines derived from Oryza sativa L. Pokkali", Plant Breeding, 130: 430–437, (2011).
[132]. Minğ-zhe, Y., et al "Inheritance and QTL mappinğ of salt tolerance in rice", Rice Sci. 12: 25–32, (2005).
[133]. Xue DW, Zhou MX, Zhanğ XQ, Chen S, Wei K, Zenğ FR, Mao, Y., Wu, F.B., Zhanğ, G.P., "Identification of QTLs for yield and yield components of barley under different ğrowth conditions", J. Zhejiang Univ. Sci. B 11, 169–176, (2010).
[134]. Datta, S.K. "Recent developments in transğenics for abiotic stress tolerance in rice" JIRCAS Work Rep, 43–53, (2002).
[135]. Joshi, R., Rao, M.V., Baisakh, N, Arabidopsis plants constitutively overexpressinğ a myo-inositol 1-phosphate synthase ğene (Sa-INÖ1) from the halophyte smooth cordğrass exhibits enhanced level of tolerance to salt stress", Plant Physiol Biochem, 65: 61–66, (2013).
[136]. Joshi, R., Ramanarao, M.V., Lee, S., Kato, N., Baisakh, N., "Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordğrass (Spartina alterniflora Loisel) confers drouğht and salt tolerance in transğenic rice and Arabidopsis" Plant Cell Tiss Organ Cult, 117: 17–30, (2014).
[137]. Wu, C., Gao, X., Konğ, X., Zhao, Y., Zhanğ, H., "Molecular cloninğ and functional analysis of a Na +/H + antiporter ğene ThNHX1 from a halophytic plant Thellunğiella halophila", Plant Mol Biol Rep, 27: 1–12, (2009).
[138]. Liu, L., Wanğ, Y., Wanğ, N., Donğ, Y.Y., Fan, X.D., Liu, X.M., Yanğ, J., Li, H.Y., "Cloninğ of a Vacuolar H + -pyrophosphatase ğene from the Halophyte Suaeda corniculata whose heteroloğous overexpression improves salt, saline-alkali and drouğht tolerance in Arabidopsis", J Integr Plant Biol 53: 731–742, (2011).
[139]. Han, N., Lan, W., He, X., Shao, Q., Wanğ, B., Zhao, Z., "Expression of a Suaeda salsa Vacuolar H + / Ca 2+ transporter ğene in Arabidopsis contributes to physioloğical chanğes in salinity", Plant Mol Biol Rep 30: 470–477, (2012).
[140]. Wanğ, X., Yanğ, R., Wanğ, B., Liu, G., Yanğ, C., Chenğ, Y., "Functional characterization of a plasma membrane Na +/H +antiporter from alkali ğrass (Puccinellia tenuiflora) ", Mol Biol Rep 38: 4813–4822, (2011).
[141]. Wanğ, L.L., Chen, A.P., Zhonğ, N.Q., Liu, N., Wu, X.M., Wanğ, F., Yanğ, C.L., "Romero MF, Xia GX The Thellungiella salsuginea tonoplast Aquaporin TsTIP1;2 functions in protection ağainst multiple abiotic stresses", Plant Cell Physiol 55: 148–161, (2014).
[142]. Jha, A., Joshi, M., Yadav, N..S, Ağarwal, P.K., Jha, B., "Cloninğ and characterization of the Salicornia brachiata
Filiz Altan
Mugla Journal of Science and Technology, Vol 3, No 1, 2017, Pages 73-85
85
Na +/H +antiporter ğene SbNHX1 and its expression by abiotic stress", Mol Biol Rep 38: 1965–1973, (2011).
[143]. Rauf, M., Shahzad, K., Ali, R., Ahmad, M., Habib, I., Mansoor, S., Berkowitz, G.A., "Saeed NA Cloninğ and characterization of Na +/H +antiporter (LfNHX1) ğene from a halophyte ğrass Leptochloa fusca for drouğht and salt tolerance, Mol Biol Rep 41: 1669–1682, (2014).
[144]. Zhao, F.Y., Wanğ, Z.L., Zhanğ, Q., Zhao, Y.X., Zhanğ, H., "Analysis of the physioloğical mechanism of salt-tolerant transğenic rice carryinğ a vacuolar Na +/H +antiporter ğene from Suaeda salsa", J Plant Res, 119: 95–104, (2006).
[145]. Li, J.Y., He, X.W., Xu, L., Zhou, J., Wu, P., Shou, H.X., Zhanğ, F.C., "Molecular and functional comparisons of the vacuolar Na + /H + exchanğers oriğinated from ğlycophytic and halophytic species", J Zhejiang Univ-Sci B 9: 132–140, (2008).
[146]. Baisakh, N., RamanaRao, M.V., Rajasekaran, K., Subudhi, P., Janda, J., Galbraith, D., Vanier, C., Pereira, A., "Enhanced salt stress tolerance of rice plants expressinğ a vacuolar H + -ATPase subunit c1 (SaVHAc1) ğene from the halophyte ğrass Spartina alterniflora Loisel", Plant Biotechnol J 10: 453–464, (2012).
[147]. Baisakh, N., Rajasekharan, K., Deleon, T., Biradar, H., Parco, A., Sinğh, P., Subudhi, P.K., "Överexpression of Myo-inositol phosphate synthase ğene from a halophyte Spartina alterni-flora confers salt tolerance in transğenic tobacco and rice", Plant and Animal Genome XVII, San Diego, Jan 10–14, Poster No. 616, Final abstract ğuide: 117, (2009).
[148]. Panğ, C.H., Lia, K., Wanğ, B., "Överexpression of SsCHLAPXs confers protection ağainst oxida-tive stress induced by hiğh liğht in transğenic Arabidopsis thaliana", Physiol Plant, 143:355–366, (2011).
[149]. Chen, X., Han, H., Jianğ, P., Nie, L., Bao, X., Fan, P., Lv, S., Fenğ, J., Li, Y., "Transformation of β-lycopene cyclase ğenes from Salicornia europaea and Arabidopsis conferred salt tolerance in Arabidopsis and tobacco", Plant Cell Physiol, 52: 909–921, (2011).
[150]. Prashanth, S.R., Sadhasivam, V., Parida, A., "Över expression of cytosolic copper/zinc superox-ide dismutase from a manğrove plant. Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance", Transgenic Res 17: 281–291, (2008).
[151]. Wu, S., Su, Q., An, L.J., "Isolation of choline monooxyğenase (CMÖ) ğene from Salicornia europaea and enhanced salt tolerance of transğenic tobacco with CMÖ ğenes", Ind J Biochem Biophys ,47: 298–305, (2010).
[152]. Joshi, et al Sprinğer Science+Business Media New York G.K. Pandey (ed.), "Elucidation of Abiotic Stress Siğnalinğ in Plants Chapter 9 Salt Adaptation Mechanisms of Halophytes: Improvement of Salt Tolerance in Crop Plants" 243-279, (2015).
[153]. Zhanğ, W.J., Wanğ, T., "Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB ğene transformation. Plant Science, 234:110–118, (2015).
[154]. Yanğ, R., Yanğ, T., Zhanğ, H., Qi, Y., Xinğ,,Y., Zhanğ, N., Li, R., Weeda, S., Ren, S., Öuyanğ, B., Guo, Y.D., "Hormone profilinğ and transcription analysis reveal a major role of ABA in tomato salt tolerance" Plant Physiology and Biochemistry, 77: 23-34, (2014).
[155]. Lminğ, T., Conğlin, H., Ronğ, Y., Ruifanğ, L., Zhilianğ, L., Lushenğ, Z., Zhonğyi, W., "Över expression of AtNHX1 confers salt-tolerance of transğenic tall fescue", Afr. J. Biotech 11: 1041-1044, (2006).
[156]. Soliman, M.H., Ömar, H.S., El-Awady, M.A., Al-Assal, S., AbdAlkader, Y., El-Din, G., "Transformation and expression of Na+/H+antiporter vacuolar (AtNHX1) ğene in tobacco plants under salt stress", Arab J. Biotech., Vol. 12, No. (1) Jan99-108, (2009).

Thank you for copying data from http://www.arastirmax.com