You are here

GÖRÜNTÜ EŞLEME VE GENETİK ALGORİTMALAR KULLANARAK GÖRÜNTÜ İÇİNDE GÖRÜNTÜ ARAMA

IMAGE SEARCHING WITHIN ANOTHER IMAGE USING IMAGE MATCHING AND GENETIC ALGORITHMS

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2014.49354
Abstract (2. Language): 
Main focus of this work is to realize image searching within another image in an efficient way. Image searching within another image is accomplished through the integrated use of image matching techniques and searching algorithms. Artificial neural networks along with various image features such as average color value, color standard deviation, correlation and edge parameters are used for image matching whereas genetic algorithms were used for image searching. In the work presented in this paper, an integrated method based on smart searching algorithms, quick image matching methods and parallel programming techniques were proposed and implemented. Proposed method was tested on several low and highresolution reference and template images. Results revealed that the proposed method can successfully match images and significantly reduce the total search time.
Abstract (Original Language): 
Bu çalışmada esas alınan problem, görüntü içinde görüntü aramayı etkin bir şekilde gerçekleştirebilmektir. Bu amaçla görüntü işleme kapsamında yer alan görüntü eşleme teknikleri ile arama algoritmaları birlikte kullanılmıştır. Görüntü eşleme için Yapay Sinir Ağları ile görüntünün ortalama renk değeri, görüntüdeki renk değerlerinin standart sapması, korelasyon ve görüntü kenar parametreleri gibi özellikler; görüntü arama için Genetik Algoritmalar kullanılmıştır. Bu çalışmada, akıllı arama algoritmaları, hızlı görüntü eşleme yöntemleri ve paralel programlama tekniklerine dayanan bütünleşik bir yöntem önerilmiş ve kullanılmıştır. Önerilen yöntem çok sayıda düşük ve yüksek çözünürlüklü referans ve şablon görüntü üzerinde test edilmiştir. Elde edilen sonuçlar önerilen yöntemin eşleşen görüntüleri elde etmede başarılı olduğunu ve toplam arama süresini azalttığını göstermiştir.
182
193

REFERENCES

References: 

[1] Gonzalez RC, Woods RE. Digital Image Processing. 3rd ed. London, England, Prentice Hall, 2008.
[2] Müller H, Michoux N, Bandon D, Geissbuhler A. “A Review of Content-Based Image Retrieval Systems in Medical Applications-Clinical Benefits and fuTure Directions”. International Journal of Medical Informatics, 73(1), 1-23, 2004.
[3] Kekre HB, Thepade SD, Maloo A. “Query by Image Content Using Colour Averaging Techniques”. International Journal of Engineering, Science and Technology, 2(6), 1612-1622, 2010.
[4] Dubey RS, Choubey R, Bhattacharjee J. “Multi Feature Content Based Image Retrieval”. (IJCSE) International Journal on Computer Science and Engineering, 2(6), 2145-2149, 2010.
[5] Singh UP, Jain S, Ahmed GF. “Content Base Image Retrieval Using Phong Shading”. (IJCSIS) International Journal of Computer Science and Information Security, 8(1), 301-306, 2010.
[6] Keysers D, Unger W. “Elastic Image Matching is NP-Complete”. Pattern Recognition Letters, 24(1-3), 445-453, 2003.
[7] Shu X, Wu XJ. “A Novel Contour Descriptor for 2D Shape Matching and its Application to Image Retrieval”. Image and Vision Computing, 29(4), 286-294, 2011.
[8] ElAlami ME. “A Novel Image Retrieval Model Based on the Most Relevant Features”. Knowledge-Based Systems, 24(1), 23-32, 2011.
[9] Torres RS, Falcao AX, Gonçalves MA, Papa JP, Zhang B, Fan W, Fox EA. “A Genetic Programming Framework for Content-Based Image Retrieval”. Pattern Recognition, 42(2), 283-292, 2009.
[10] Ferreira CD, Santos JA, Torres RS, Gonçalves MA, Rezende RC, Fan W. “Relevance Feedback Based on Genetic Programming for Image Retrieval”. Pattern Recognition Letters, 32(1), 27-37, 2011.
[11] Liu Y, Zhang D, Lu G, Ma WY. “A Survey of Content-Based Image Retrieval with High-Level Semantics”. Pattern Recognition, 40(1), 262-282, 2007.
[12] Wang XY, Yu YJ, Yang HY. “An Effective Image Retrieval Scheme Using Color, Texture and Shape Features”. Computer Standards & Interfaces, 33(1), 59-68, 2011.
[13] Lin C, Chang HJ. “Identification of Pressurized Water Reactor Transient Using Template Matching”. Annals of Nuclear Energy, 38(7), 1662-1666, 2011.
[14] Yuan Y, Pang Y, Wang K, Shang M. “Efficient Image Matching Using Weighted Voting”. Pattern Recognition Letters, 33(4), 471-475, 2011.
[15] Yan H, Yang J, Yang J. “Bimode Model for Face Recognition and Face Representation”. Neurocomputing, 74(5), 741-748, 2011.
[16] Kumar R, Vikram BRD. “Fingerprint Matching Using Multi-Dimensional ANN”. Engineering Applications of Artificial Intelligence, 23(2), 222-228, 2010.
Pamukkale Univ Muh Bilim Derg, 21(5), 182-193, 2015
M. Karakoc, K. Kavaklıoglu
193
[17] Mattoccia S, Tombari F, Stefano LD. “Efficient Template Matching for Multi-Channel Images”. Pattern Recognition Letters, 32(5), 694-700, 2011.
[18] Bunte K, Biehl M, Jonkman MF, Petkov N. “Learning Effective Color Features for Content Based Image Retrieval in Dermatology”. Pattern Recognition, 44(9), 1892-1902, 2010.
[19] Moon YS, Kim BM, Kim MS, Whang KY. “Scaling-Invariant Boundary Image Matching Using Time-Series Matching Techniques”. Data & Knowledge Engineering, 69(1), 1022-1042, 2010.
[20] Choi MS, Kim WY. “A Novel two Stage Template Matching Method for Rotation and Illumination Invariance”. Pattern Recognition, 35(1), 119-129, 2002.
[21] Chang SH, Cheng FH, Hsu WH, Wu GZ. “Fast Algorithm for Point Pattern Matching: Invariant to Translations, Rotations and Scale Changes”. Pattern Recognition, 30(2), 311-320, 1997.
[22] Ding L, Goshtasby A, Satter M. “Volume Image Registration by Template Matching”. Image and Vision Computing, 19(12), 821-832, 2001.
[23] Kwok SH, Zhao JL. “Content-Based Object Organization for Efficient Image Retrieval in Image Databases”. Decision Support Systems, 42(3), 1901-1916, 2006.
[24] Fernandez X. “Template Matching of Binary Targets in Grey-Scale Images: A Nonparametric Approach”. Pattern Recognition, 30(7), 1175-1182, 1997.
[25] Debella-Gilo M, Kaab A. “Sub-Pixel Precision Image Matching for Measuring Surface Displacements on Mass Movements Using Normalized Cross-Correlation”. Remote Sensing of Environment, 115(1), 130-142, 2011.
[26] Fredriksson K, Ukkonen E. “Combinatorial Methods for Approximate Image Matching Under Translations and Rotations”. Pattern Recognition Letters, 20(11-13), 1249-1258, 1999.
[27] Haykin S. Neural Networks and Learning Machines. 3rd ed. New Jersey, USA, Prentice Hall, 2009.
[28] Goldberg DE. Genetic Algorithms in Search, Optimization, and Machine Learning. 1st ed. Boston, MA, USA, Addison-Wesley Professional, 1989.

Thank you for copying data from http://www.arastirmax.com