You are here

YÜKSEK HIZLI OKSİ YAKIT İLE ÜRETİLEN WCCo-Mo ESASLI KAPLAMALARIN MİKROYAPI KARAKTERİZASYONU

MICROSTRUCTURE CHARACTERIZATION OF WCCo-Mo BASED COATINGS PRODUCED USING HIGH VELOCITY OXYGEN FUEL

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2015.56933

Keywords (Original Language):

Abstract (2. Language): 
The present study has been carried out in order to investigate the microstructural properties of WCCo-Mo composite coatings deposited onto a SAE 4140 steel substrate by high velocity oxygen fuel (HVOF) thermal spray. For this purpose, the Mo quantity added to the WCCo was changed as 10, 20, 30 and 40 wt. % percents. The coatings are compared in terms of their phase composition, microstructure and hardness. Phase compound and microstructure of coating layers were examined using X-ray diffractometer (XRD) and scanning electron microscope (SEM). XRD results showed that WCCo-Mo composite coatings were mainly composed of WC, W2C, Co3W3C, Mo2C, MoO2, Mo and Co phases. The average hardness of the coatings increased with increasing Mo content.
Abstract (Original Language): 
Bu çalışma, yüksek hızlı oksi yakıt (HVOF) ısıl püskürtme yöntemi ile SAE 4140 çeliği üzerinde üretilen WCCo-Mo kompozit kaplamaların mikroyapısal özelliklerini araştırmak için yapılmıştır. Bu amaç için WCCo tozlarına ilave edilen Mo miktarı % ağ. 10, 20, 30 ve 40 olarak değiştirilmiştir. Kaplamalar, faz bileşimi, mikroyapı ve sertlik özellikleri açısından karşılaştırılmıştır. Kaplama tabakalarının faz bileşimi ve mikroyapısı X-ışını difraktogramı (XRD) ve taramalı elektron mikroskobu (SEM) ile incelenmiştir. XRD sonuçları, WCCo-Mo kaplama tabakasının WC, W2C, Co3W3C, Mo2C, MoO2, Mo ve Co fazlardan oluştuğunu göstermiştir. Kaplamaların sertliği Mo artışı ile artmıştır.
344
347

REFERENCES

References: 

[1] Wayne SF, Sampath S. “Structure-Property Relationship
in Sintered and Thermally Sprayed WC-Co”. Journal of
Thermal Spray Technology, 1(4), 307-315, 1992.
[2] Stewart DA, Shipway PH, McCartney DG. “Abrasive Wear
Behaviour of Conventional and Nanocomposite
HVOF-Sprayed WC-Co Coatings”. Wear, 225-229(2),
789-798, 1999.
[3] Shipway PH, McCartney DG, Sudaprasert T. “Sliding wear
Behavior of Conventional and Nanostructured HVOF
Sprayed WC/Co coatings”. Wear, 259(7-12), 820-827,
2005.
[4] Laribi M, Mesrati N, Vannes AB, Treheux D. “Adhesion
and Residual Stresses Determination of Thermally
Sprayed Molybdenum on Steel”. Surface and Coatings
Technology, 166(2-3), 206-212, 2003.
[5] Hwang B, Lee S, Ahn J. “Correlation of Microstructure and
Wear Resistance of Molybdenum Blend Coatings
Fabricated by Atmospheric Plasma Spraying”. Materials
Science and Engineering: A, 366(1), 152-163, 2004.
Pamukkale Univ Muh Bilim Derg, 21(8), 344-347, 2015
(15. Uluslararası Malzeme Sempozyumu Özel Sayısı)
S. Islak, D. Kır, S. Buytoz, C. Özorak, M. Akkaş, U. Çalıgülü, M. M. Yıldırım
347
[6] Sidhu TS, Prakash S, Agrawal RD. “Characterisations of HVOF Sprayed NiCrBSi Coatings on Ni- and Fe-Based Superalloys and Evaluation of Cyclic Oxidation Behaviour of Some Ni-Based Superalloys in Molten Salt Environment”. Thin Solid Films, 515(1), 95-105, 2006.
[7] Islak S, Buytoz S. “Microstructure Properties of HVOF-Sprayed NiCrBSi/WCCo-Based Composite Coatings on AISI 1040 Steel”. Optoelectronics and Advanced Materials-Rapid Communications, 7(11-12), 900-903, 2013.

Thank you for copying data from http://www.arastirmax.com