You are here

Betonarme konsol istinat duvarlarının parçacık sürü optimizasyonu ile optimum tasarımı

Optimum design of reinforced concrete cantilever retaining walls with particle swarm optimization

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2015.22590
Abstract (2. Language): 
In this study, a Particle Swarm Optimization (PSO) based algorithm is used for optimum design of reinforced concrete cantilever retaining walls. Besides vertical loads, both active and static lateral ground pressures are considered for design. Reinforced concrete design rules defined in TS-500 and checking procedures about sliding, overturning and bearing capacity failures defined in TS-7994 are taken into account as constraints of the optimization problem. In order to evaluate the relationship between optimum design results and values of PSO solution parameters, a sensitivity analysis is performed. Results show that, PSO based solution algorithm may be used as an efficient tool for optimum design of reinforced concrete cantilever retaining walls by satisfying all considered constraints.
Abstract (Original Language): 
Bu çalışmada, betonarme konsol istinat duvarlarının optimum tasarımı için Parçacık Sürü Optimizasyonu (PSO) tabanlı bir algoritma kullanılmıştır. Tasarımda düşey yüklerle beraber statik yatay zemin itkileri de dikkate alınmıştır. TS-500’de yer alan betonarme tasarımı ile ilgili koşullar ve TS-7994’te yer alan kayma, devrilme ve taşıma gücü kontrolleri ile ilgili koşullar, optimizasyon probleminin kısıtları olarak ele alınmıştır. Tasarım sonuçlarının PSO çözüm parametrelerine duyarlılığını araştırmak amacıyla bir duyarlılık analizi yapılmıştır. Elde edilen sonuçlar PSO tabanlı çözüm algoritmasının, betonarme konsol istinat duvarlarının dikkate alınan kısıtlar sağlanacak şekilde optimum tasarımında etkili bir araç olarak kullanılabileceğini göstermiştir.
129
135

REFERENCES

References: 

[1] Türk Standartları Enstitüsü. “TS-7994 Zemin Dayanma Yapıları: Sınıflandırma, Özellikleri ve Projelendirme Esasları”. Türk Standartları Enstitüsü, Ankara, Türkiye, 1990.
[2] Öztürk T, Öztürk Z. “Deprem bölgelerinde yapılacak prefabrike betonarme istinat duvarlarının tasarımı”. Kocaeli Deprem Sempozyumu, Kocaeli, Türkiye, 23-25 Mart 2005.
[3] Özden K, Trupia AL, Eren İ, Öztürk T. Betonarme İstinat Duvarları ve Perdeleri. İstanbul, Türkiye, İstanbul Teknik Üniversitesi İnşaat Fakültesi Matbaası, 1995.
[4] Dembicki E, Chi T. “System analysis in calculation of cantilever retaining wall”. International Journal for Numerical and Analytical Method in Geomechanics, 13(6), 599-610, 1989.
Pamukkale Univ Muh Bilim Derg, 22(3), 129-135, 2016
A. H. Kayhan, A. Demir
135
[5] Keskar AV, Adidam SR. “Minimum cost design of a cantilever retaining wall”. The Indian Concrete Journal, 63(8), 401-405, 1989.
[6] Basudhar PK, Lakshman B, Dey A. “Optimal cost design of cantilever retaining walls”. IGC-2006 Indian Geotechnical Conference, Chennai, India, 14-16 December 2006.
[7] Saribaş A, Erbatur F. “Optimization and sensitivity of retaining walls”. Journal of Geotechnical Engineering, 122(8), 649-656, 1996.
[8] Goldberg DE. Genetic Algorithms in Search, Optimization, and Machine Learning. 1st ed. Boston, Massachusetts, USA Addison Wesley Pub., 1989.
[9] Karaboga D, Basturk B. “A Powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)”. Journal of Global Optimization, 39(3), 459-471, 2007.
[10] Geem ZW, Kim JH, Loganathan GV. “A new heuristic optimization algorithm: Harmony search”. Journal of Simulation, 76(2), 60-68, 2001.
[11] Storn R, Price K. “Differential Evolution-A Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces”. ICSI, Muenchen, Germany, Technical Report TR-95-012 1995.
[12] Kirkpatrick S, Gelatt C, Vecchi M. “Optimization by simulated annealing”. Journal of Science, 220(4598), 671-680, 1983.
[13] Bazaz JB, Fahmideh A. “Optimum cost design of reinforced concrete cantilever retaining wall using genetic algorithm”. 9th International Congress on Civil Engineering, Isfahan, Iran, 8-10 May 2012.
[14] Ceranic B, Fryer C, Baines RW. “An application of simulated annealing to the optimum design of reinforced concrete retaining structures”. Journal of Computers Structures, 79(17), 1569-1581, 2001.
[15] Yepes V, Alcala J, Perea C, González-Vidosa F. “A parametric study of optimum earth-retaining walls by simulated annealing”. Journal of Engineering Structures, 30(3), 821-830, 2008.
[16] Kaveh A, Abadi ASM. “Harmony search based algorithm for the optimum cost design of reinforced concrete cantilever retaining walls”. International Journal of Civil Engineering, 9(1), 1-8, 2010.
[17] Camp VC, Akin A. “Design of retaining walls using big bang-crunch optimization”. Journal of Structural Engineering, 138(3), 438-448, 2012.
[18] Kaveh A, Khayatazad M. “Optimal design of cantilever retaining walls using ray optimization method”. Transactions of Civil Engineering, 38(1), 261-274, 2014.
[19] Kennedy J, Eberhart R. “Particle swarm optimization”. IEEE International Conference on Neural Networks, Piscataway, NJ, 27 November-1 December 1995.
[20] Perez RE, Behdinan K. “Particle swarm approach for structural design optimization”. Journal of Computers and Structures, 85(16-20), 1579-1588, 2007.
[21] Salerno J. “Using particle swarm optimization technique to train a recurrent neural model”. 9th IEEE International Conference Tools and Artificial Intelligence, Newport, Beach, California, USA, 3-8 November 1997.
[22] Salman A, Ahmad I, Al-Madani S. “Particle swarm optimization for task assignment problem”. Microprocessors and Microsystems, 26(8), 363-371, 2002.
[23] Slade WH, Ressom HW, Musavi MT, Miller RL. “Inversion of ocean color observations using partical swarm optimization”. IEEE Transactions on Geoscience and Remote Sensing, 42(9), 1915-1923, 2004.
[24] Ayvaz MT. “A Linked simulation-optimization model for simultaneously estimating the manning’s surface roughness values and their parameter structures in shallow water flows”. Journal of Hydrology, 500, 183-199, 2013.
[25] Khajehzadeh M, Taha MR, El-Shafie A, Eslami M. “Modified particle swarm optimization for optimum design of spread footing and retaining wall”. Journal of Zhejiang University-Science A, 12(6), 415-427.
[26] Ahmadi-Nedushan B, Varaee H. “Optimal design of reinforced concrete retaining walls using a swarm ıntelligence technique”. 1st International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, Civil-Comp Press, Stirlingshire, UK, 1-4 September 2009.
[27] Pei Y, Xia Y. “Design of Reinforced cantilever retaining walls using heuristic optimization algorithms”. SCGM-2012 International Conference on Structural Computation and Geotechnical Mechanics, Yunnan, China, 24-25 March, 2012.
[28] Türk Standartları Enstitüsü. “TS-500 Betonarme Yapıların Tasarım ve Yapım Kuralları”. Türk Standartları Enstitüsü, Ankara, Türkiye, 2000.
[29] Özden K, Öztürk T. “Bazı özel durumlarda yalnız depremden oluşan basınç ve itkiler”. 3. Ulusal Deprem Mühendisliği Kongresi, İstanbul, Türkiye, 27-31 Mart 1995.
[30] TC. Bayındırlık ve İskan Bakanlığı. “Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik”. Afet İşleri Genel Müdürlüğü, Ankara, Türkiye, 2007.
[31] Hu X, Eberhart RC. “Tracking Dynamic Systems With PSO: Where’s the Cheese?”. Proceedings of the Workshop on Particle Swarm Optimization, Purdue School of Engineering and Technology, Indianapolis, 2001.
[32] Shi Y, Eberhart RC. “Parameter Selection in Particle Swarm Optimization”. Evolutionary Programming VII. Lecture Notes in Computer Science, Springer, Berlin, 1447, 1998.
[33] Microsoft. “Microsoft Excel-Visual Basic for Applications”. Microsoft Press, Washington, USA, 1995.
[34] T.C. Çevre ve Şehircilik Bakanlığı. “Birim Fiyat”. TC. Çevre ve Şehircilik Bakanlığı, Ankara, Türkiye, 2014.
[35] Saltelli A, Annoni P. “How to avoid a perfunctory sensitivity analysis”. Journal of Environmental Modelling & Software, 25(12), 1508-1517, 2010.

Thank you for copying data from http://www.arastirmax.com