You are here

Balcılar damar tipi barit-galenit cevherleşmesinin maden jeolojisi ve sülfür izotop jeokimyası, Biga yarımadası, Türkiye

Sulfur isotope geochemistry and mineralogy of Balcilar vein type barite-sulphide mineralization, Biga peninsula, NW Turkey

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2014.87699

Keywords (Original Language):

Abstract (2. Language): 
The Balcılar (Çanakkale) barite-galena mineralization is a typical example of the vein type barite-lead-zinc deposits in the Biga Peninsula. The lithologic units in the study area are Akçaalan andesite, Eocene, Adadağı pyroclastics, Oligocene, Dededağ dacite, Miocene, Karaömerler basalt, Plio-Quaternary and alluvium Quaternary. Barite-galena veins occurred along the faults developed within the andesites. Barite, quartz and galena are main minerals and are accompanied by minor amounts of sphalerite, pyrite, chalcopyrite, covellite and marcasite. The earliest barite (barite I) occurs as coarse-grained subhedral-euhedral crystals and the later (barite II) as small tabular crystals in between the earlier coarse crystals. Quartz occurs as fine-grained crystals with the later small barite crystals. Galena, sphalerite, chalcopyrite, pyrite, marcasite and covellite occur open spaces within the earlier barite (barite I) crystals. Sulfur isotopes indicate that in galena the reduced sulfur from bacterially or inorganically reduced sulphate, or from an isotopically light reduced S-source. The δ34SH2S values calculated from the barite-H2S and galena-H2S fractionation factors, in the same samples, indicate a temperature of between 200 and 300 °C. Relatively lower δ34S values of barites than dissolved sulphate in modern oceans or Eocene sea waters have been evaluated as the ore forming hydrothermal fluids were derived from interacting throughout the magmatic host-rocks.
Abstract (Original Language): 
Balcılar (Çanakkale) barit-galenit cevherleşmesi, Biga yarımadasındaki damar tipi kurşun-çinko-barit yataklarının tipik örneklerinden birisidir. İnceleme alanındaki litolojik birimler; Eosen Akçaalan andeziti, Oligosen Adadağı piroklastikleri, Miyosen Dededağ dasiti, Pliyo-kuvaterner Karaömerler bazaltı ve Kuvaterner aluvyonlar olarak ayırtlanmıştır. Barit-galenit damarları andezitler içerisindeki faylar boyunca oluşmuşlardır. Barit, kuvars ve galenit ana mineraller olup, bu minerallere az miktarda sfalerit, pirit, kalkopirit, kovellin ve markazit eşlik etmektedir. Baritler erken evrede iri-taneli yarı özşekilli-özşekilli kristaller (barit I) ve geç evrede kaba kristallerle girift küçük çubuksu kristaller (barit II) biçiminde iki-evreli mineralizasyonla gelişmiştir. Kuvars küçük barit kristalleriyle birlikte geç evrede oluşmuştur. Galenit, sfalerit, kalkopirit, pirit, markazit ve kovellin geç evre ürünleri olup, önceki oluşan barit kristalleri içerisindeki boşluk zonları boyunca oluşmuşlardır. Sülfür izotop bulguları galenitteki sülfürün bakteriyel veya inorganik sülfattan (SO4=) indirgenmiş veya izotopik olarak hafif S-kökenle etkileşimi göstermektedir. Barit-H2S ve galenit-H2S ayrımlaşma faktörlerinden itibaren hesaplanan δ34SH2S değerleri, sıcaklık koşullarının 200-300 °C arasında olduğunu göstermiştir. Baritlerin güncel okyanus veya Eosen deniz suyu bileşiminden daha düşük δ34S değerleri, hidrotermal sıvıların magmatik yan kayaçlarla etkileşiminden kaynaklandığı biçiminde değerlendirilmiştir.

REFERENCES

References: 

[1] Jingwen M, Pirajno F, Lehmann B, Maocheng L, Berzina A. “Distribution of porphyry deposits in the eurasian continent and their corresponding tectonic settings”. Journal of Asian Earth Sciences, 79, 576-584, 2013.
[2] Yigit O. “A Prospective sector in the tethyan metallogenic belt: Geology and geochronology of mineral deposits in the Biga Peninsula, NW Turkey”. Ore Geology Reviews, 46, 118-148, 2012.
[3] Gjelsvik T, “Research of Ore Deposits Related Alpin Volcanism in the Biga Peninsula, West of Turkey”. Technical Reports of the General Directorate of the Mineral Research and Exploration Institute of Turkey (MTA), Ankara, Turkey, 2480, 1956.
[4] Dinçer H. “Barite Mineralizations in Çanakkale-Lapseki-Umurbey”. Technical Reports of the General Directorate of the Mineral Research and Exploration Institute of Turkey (MTA), Ankara, Turkey, 2485, 1958.
[5] Alpan T. “Geology of Koru-Balcılar (Çanakkale) Village”. Technical Reports of the General Directorate of the Mineral Research and Exploration Institute of Turkey (MTA), Ankara, Turkey, 6840, 1968.
[6] Ünal M. Mineralogic and Petrographic Investigation of Koru Village (Lapseki-Çanakkale) Lead-Zinc Deposits. Msc Thesis, Hacettepe University, Ankara, Turkey, 1992.
[7] Andiç T, Kayhan F. “Report on the General Geochemical Research of the Çanakkale-Lapseki”. Technical Reports of the General Directorate of the Mineral Research and Exploration Institute of Turkey (MTA), Ankara, Turkey, 10059, 1997.
[8] Yanagiya K, Sato J. “Report on the Mineral Exploration in the Çanakkale Area Republic of Turkey”. Technical Reports of the General Directorate of the Mineral Research and Exploration Institute of Turkey (MTA), Ankara, Turkey, 8999, 1989.
[9] Tolun E, Baykal F. “Report on the Cu-Pb-Zn deposits of Çanakkale-Lapseki-Umurbey-Koru Dere”. Reports of the General Directorate of the Mineral Research and Exploration Institute of Turkey (MTA), Ankara, Turkey, 456, 1960.
[10] Bozkaya G, Gökçe A, Banks DA, Bodnar RJ. “Epithermal mineralization in Western Turkey: Nature and origin of the fluids”. European Current Research on Fluid Inclusions (ECROFI-XXI), Leoben, Australia, 9-11 August 2011.
[11] Bozkaya G. Geology of Koru (Çanakkale) Barite Bearing Lead-Zinc Deposits. PhD Thesis, Cumhuriyet University, Sivas, Turkey, 2001.
[12] Bozkaya G, Gökçe A. “Geology, ore petrography and fluid inclusion characteristics of the koru (Çanakkale) Pb-Zn deposits”. Cumhuriyet University Bulletin of the Faculty of Engineering, Serie A-Earth Sciences, 18, 55-70, 2001.
[13] Sümengen M, Terlemez İ, Şentürk K, Karaköse C. “Stratigraphy, Sedimentology and Tectonics of Gelibolu Peninsula and Southwestern Trakya Basin”. Reports of the General Directorate of the Mineral Research and Exploration Institute of Turkey (MTA), Ankara, Turkey, 8218, 1987.
[14] Ercan T, Satır M, Steinitz G, Dora A, Sarıfakıoğlu E, Adis C, Walter H, Yıldırım T. “Characteristics of the Tertiary volcanism of the Biga Peninsula, Gökçeada, Bozcaada and Tavşanadası NW Anatolia”. Bulletin of the Mineral Research and Exploration Institute of Turkey, 117, 55-86, 1995.
[15] Barton Jr PB, Bethke PM. “Chalcopyrite disease in sphalerite: Pathology and epidemiology”. American Mineralogist, 72, 451-467, 1987.
[16] Kojima S. “A Coprecipitation experiments on intimate association of sphalerite and chalcopyrite and its bearing on the genesis of kuroko ores”. Mining Geology, 40(1990), 147-158, 1990.
[17] Bortnikov NS, Genkin AD. Dobrovol’skaya MG, Muravitskaya GN, Filimonova AA. “The nature of chalcopyrtie inclusions in sphalerite: exsolution, coprecipitation, or “disease”?”. Economic Geology, 86, 1070-1082, 1991.
[18] Ohmoto H, Rye RO. Isotopes of Sulfur and Carbon. Editors: Barnes, H. Geochemistry of Hydrothermal Ore Deposits, 509-567, New York, USA, Rinehart and Winston, 1979.
[19] Li YB, Liu JM. “Calculation of sulfur isotope fractionation in sulfides”. Geochimica et Cosmochimica Acta, 70(7), 1789-1795, 2006.
[20] Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I. “The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation”. Chemical Geology, 28, 190-260, 1980.
[21] Paytan A, Kastner M, Campbell D, Thiemens MH. “Seawater sulfur isotope fluctuations in the cretaceous”. Science, 304(5677), 1663, 2004.
[22] Rees CE, Jenkins WJ, Monster J. “The sulphur isotope geochemistry of ocean water sulphate”. Geochimica et Cosmochimica Acta, 42(4), 377-382, 1978.
[23] Ece ÖI, Schroeder PA, Smilley MJ, Wampler JM. “Acid-Sulphate hydrothermal alteration of andesitic tuffs and genesis of halloysite and alunite deposits in the Biga Peninsula, Turkey”. Clay Minerals, 43(2), 281-315, 2008.
[24] Ece ÖI, Ekinci B, Schroeder PA, Crowe D, Esenli F. “Origin of kaolin-alunite deposits in simav graben, Turkey: timing styles of hydrothermal mineralization”. Journal of Volcanology and Geothermal Research, 255, 57-78, 2013.
[25] Hoefs J. Stable Isotope Geochemistry. 6th ed. Heidelberg, Berlin, Springer-Verlag, 2009.
[26] Bozkaya G, Banks DA, Özbaş F, Wallington J. “Fluid processes in the tesbihdere base-metal-au deposit: implications for epithermal mineralization in the Biga Peninsula, NW Turkey”. Central European Journal of Geosciences, 6(2), 148-169, 2014.
Pamukkale Univ Muh Bilim Derg, 22(3), 200-205, 2016
G. Bozkaya, D. A. Banks
205
[27] Chaussidon M, Lorand JP. “Sulphur isotope composition of orogenic spinel lherzolite massifs from ariege (North-Eastern Pyrenees, France): An ion microprobe study”. Geochimica et Cosmochimica Acta, 54(10), 2835-2846, 1990.
[28] Chaussidon M, Albarède F, Sheppard SMF. “Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions”. Earth and Planetary Science Letters, 92(2), 144-156, 1989.
[29] Rollinson HR. Using Geochemical Data: Evaluation, Presentation, Interpretation. 1st ed. Harlow, UK, Longman, 1993.
[30] Harris AJL, Carniel R, Jones J. “Identification of variable convective regimes at erta ale lava lake”. Journal of Volcanology and Geothermal Research, 142(3-4), 207-223, 2005.
[31] Unal EI, Gulec N, Kuscu I, Fallick AE. 2013. “Genetic investigation and comparison of Kartaldağ and Madendağ epithermal gold deposits in Çanakkale NW Turkey”. Ore Geology Reviews, 53, 204-222.
[32] Bozkaya G, Banks DA. “Epithermal base-metal-au deposits, NW Turkey: P-T-Composition of the ore fluids”. Acta Geologica Sinica, 88(2), 1064-1065, 2014.
[33] Bozkaya G, Banks DA, Ozbas F, Wallington J. “Fluid processes in the tesbihdere base-metal-au deposit: implications for epithermal mineralization in the Biga Peninsula, NW Turkey”. Central European Journal of Geoasciences, 6(2), 148-169, 2014.
[34] Bozkaya G, Banks DA. “Physico-Chemical controls on Ore deposition in the arapucandere Pb-Zn-Cu-Precious metal deposit, Biga Peninsula, NW Turkey”. Ore Geology Reviews, 66, 65-81.
[35] Sillitoe RH, Hedenquist JW. Linkages Between Volcanotectonic Settings, Ore-Fluid Compositions, and Epithermal Precious Metal Deposits. Editors: Simmons SF, Graham I. Volcanic, Geothermal and Ore-Forming Fluids: Rulers and Witnesses of Processes Within the Earth. Society of Economic Geologists Special Publication, 315-343, USA, Society of Economic Geologists, 2003.
[36] Duuring P, Rowins SM, McKinley BSM, Dickinson JM, Diakow LJ, Kim YS, Creaser RA. “Examining potential genetic links between jurassic porphyry Cu-Au±Mo and epithermal Au±Ag mineralization in the toodoggone district of north-central British Columbia, Canada”. Mineralium Deposita, 44, 463-499, 2009.
[37] Kamvong T, Zaw K. “The origin and evolution of skarn-forming fluids from the Phu Lon deposit, Northern Loei Fold Belt, Thailand: Evidence From Fluid Inclusion and Sulfur Isotope Studies”. Journal of Asian Earth Sciences, 34(5), 624-633, 2009.
[38] McKibben MA, Eldridge CS. “Radical sulphur isotope zonation of pyrite accompanying boiling and epithermal gold deposition: A SHRIMP study of the valles caldera, New Mexico”. Economic Geology, 85(8), 1917-1925, 1990.
[39] Bethke PM, Rye RO, Stoffregen RE, Vikre PG. “Evolution of the magmatic-hydrothermal acid-sulphate system at summitville, Colorado: Integration of geological, stable-isotope and fluid inclusion evidence”. Chemical Geology, 215(1-4), 281-315, 2005.
[40] Hedenquist JW, Simmons SF, Giggenbach WF, Eldridge CS. “White Island, New Zealand, volcanic-hydrothermal system represents the geochemical environment of high-sulphidation Cu and Au deposition”. Geology, 21(8), 731-734, 2013.
[41] Drummond SE, Ohmoto H. “Chemical evolution and mineral deposition in boilinghydrothermal systems”. Economic Geology, 80(1), 126-147, 1985.
[42] Brown KL. “Gold deposition from geothermal discharges in New Zealand”. Economic Geology, 81, 979-983, 1986.
[43] Yilmaz H, Oyman T, Sönmez FN, Arehart GB, Billor Z. “Intermediate sulfidation epithermal gold-base metal deposits in tertiary subaerial volcanic rocks, Sahinli/Tespih Dere (Lapseki/Western Turkey)”. Ore Geology Reviews, 37(3-4), 236-258, 2010.
[44] Yilmaz H, Oyman T, Arehart GA, Colakoglu R, Billor Z. “Low-Sulphidation type Au-Ag mineralization at Bergama, Izmir, Turkey”. Ore Geology Reviews, 32(1-2), 81-124, 2007.

Thank you for copying data from http://www.arastirmax.com