You are here

A new method for determining lower density layer in prospection of hydrocarbon

Hidrokarbon aramacılığında düşük yoğunluklu tabakayı bulmak için yeni bir yöntem

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2015.94834
Abstract (2. Language): 
It is known that densities in formations are usually assumed to be constant for gravity model calculations. This also implies that formations are homogeneous and isotropic. However, the formations are usually heterogeneous and densities vary depending on heterogeneity. For this reason, densities should be taken into account as variables. Some scientists consider densities as variables in each formation in model calculations. In other words, density is defined as a function of the required parameters. In fact, functional change is regular. However, density is an irregular variable that depends on the change boundaries of seismic velocity. In this study, it is aimed to take density into account as a variable by using detected seismic velocity boundaries at which seismic velocity changes for each formation. In addition to main formations in model geometry in 3D inversion calculations, another formation was defined. This additional formation has been described by using a combination of all of the change boundaries of seismic velocity present in each formation in a specific order. The density calculated for the additional formation estimated the variation of density between the change boundaries of seismic velocity. This variation is added to the mass densities that are calculated for the description number of each zone. So, lower-density layer comprising oil can be determined by this method. The reliability of the results of the method depends on the reliability of seismic velocity boundaries. Moreover, the increasing number of seismic velocity boundaries leads to the increasing resolution of density variations.
Abstract (Original Language): 
Bazı bilim adamları, 3 boyutlu gravite model hesaplamalarında, yoğunlukları her formasyon içinde değişken olarak ele alırlar. Yani yoğunluğu parametrelere bağlı bir fonksiyon olarak tanımlarlar. Bir yeraltı tabakası içindeki yoğunluk değişimi derinlikle orantılı olarak bulunur. Bu çalışmada, her formasyon içinde tespit edilen sismik hız sınırları kullanılarak, yoğunluğun değişken olarak göz önüne alınması amaçlanmıştır. Sismik hız sınırlarının izlediği yol, yoğunluk değişiminin bir göstergesidir. 3B ters çözüm hesaplarında model geometri içindeki ana formasyonlara ek olarak bir formasyon daha tanımlanmıştır. Bu ek formasyon tanımı, her formasyon içinde mevcut olan sismik hız sınırlarının tümü kesintisiz kullanılarak yapılmıştır. İşte bu ek formasyon için hesaplanan yoğunluk, sismik hız sınırları arasındaki yoğunluk değişim miktarı olarak kabul edilmiştir. Bu değişim, ana formasyonlar için hesaplanan yoğunluklara bir düzen içinde ilave edilerek, yoğunluğun derinlikle değişimi ayrıntılı olarak saptanmıştır. Bu çalışma, Adıyaman, Diyarbakır ve Gaziantep bölgesine ait sismik ve açılan kuyulara ait verilerin bir kısmının TPAO’dan alınmasıyla düşük hızlı yer altı modeli oluşturularak yapılmıştır. Bu çalışma sonunda sismik hız sınırlarının ekstra bir kütle olarak alınmasıyla yoğunluğun derinlikle nasıl değiştiği saptanmıştır. Böylece hidrokarbon içeren düşük yoğunluklu tabaka tespit edilmeye çalışılmıştır. Hidrokarbon aramalarında bu yöntem kullanılarak; daha az kuyu açılarak sonuca gidilebilir. Bu çalışmada, başlangıçta yoğunluklar sabit olarak dikkate alınmıştır. Fakat her tabaka içindeki yoğunluklar değişken olarak hesaplanmıştır.
233
240

REFERENCES

References: 

[1] Banerjee B, Gupta SPD. “Gravitational attraction of a rectangular parallelepiped”. Geophysics, 42(5), 1053-1055, 1977.
[2] Barbosa VCF, Silva JBC, Medeiros WE. “Gravity inversion of a discontinuous relief stabilized by weighted smoothness constraints on depth”. Geophysics, 64(5), 1429-1437, 1999.
[3] Bear GW, Al-Shukri HJ, Rudman AJ. “Linear inversion of gravity data for 3-D density distributions”. Geophysics, 60(5), 1354-1364, 1995.
[4] Becking LGMB, Moore D. “Density Distribution in Sediments”. Journal of Sedimentary Petrology, 29(1), 47–55, 1959.
[5] Chai Y, Hinze WJ. “Gravity inversion of an interface above which the density contrast varies exponentially with depth”. Geophysics, 53(6), 837-845, 1988.
Pamukkale Univ Muh Bilim Derg, 22(3), 233-240, 2016
A. Elmas, H. Çavşak
239
[6] Chakravarthi V, Sundararajan N. “3D Gravity Inversion of basement relief-a depth-dependent density approach”. Geophysics, 72(2), 123–132, 2007.
[7] Chappell A, Kusznir N. “An algorithm to calculate the gravity anomaly of sedimentary basins with exponential density-depth relationships”. Geophysical Prospecting, 56(2), 249-258, 2008.
[8] Cordell L. “Gravity analysis using an exponential Density-Depth Function-San Jacinto Graben, California”. Geophysics, 38(4), 684-690, 1973.
[9] Cordell L. “Sedimentary facies and gravity anomaly across master faults of the riogrande rift in New Mexico”. Geology, 7(4), 201-205, 1979.
[10] Çavşak H. Dichtemodelle für den Mitteleuropaischen Abschnitt der Egt Aufgrund der Gemeinsamen Inversion von Geoid, Schwere und Refraktion Seismich Ermittelter Krustenstruktur. Ph Thesis, Johannes Gutenberg-Universitat, Mainz, Germany, 1992.
[11] Çavşak H. “Gravity effect of spreading ridges comparison of 2D and spherical models”. Marine Geophysical Researches, 29(3), 161-165, 2008.
[12] Çavşak H. “The effects of the earth’s curvature on gravity and Geoid Calculations”. Pure and Applied Geophysics, 169(4), 733-740, 2012.
[13] Çavşak H. “Effective calculation of gravity effects of the uniform triangle polyhedral”. Studia Geophysica et Geodaetica, 56(1), 185-195, 2012.
[14] Danes ZF. “On a successive approximation method for interpreting gravity anomalies”. Geophysics, 25(6), 1215-1228, 1960.
[15] Danes ZF. “An analytic method for the determination of distant terrain corrections”. Geophysics, 47(10), 1453-1455, 1982.
[16] Gallardo-Delgado LA, Pérez-Flores MA, Gómez-Treviño E. “A versatile algorithm for joint 3D inversion of gravity and magnetic data”. Geophysics, 68(3), 949-959, 2003.
[17] García-Abdeslem J. “Gravitational attraction of a rectangular prism with depth-dependent density”. Geophysics, 57(3), 470-473, 1992.
[18] García-Abdeslem J. “The Gravitational attraction of a right rectangular prism with density varying with depth following a cubic polynomial”. Geophysics, 70(6), 139-142, 2005.
[19] García-Abdeslem J, Martín-Atienza B. “A method to compute terrain corrections for gravimeter stations using a digital elevation model”. Geophysics, 66(4), 1110-1115, 2001.
[20] García-Abdeslem J, Romo JM, Gómez-Treviño E, Ramírez-Hernána FJ, Flores-Luna CF. “A constrained 2D gravity model of the sebastián vizcaíno basin, Baja California Sur, Mexico”. Geophysical Prospecting, 53(6), 755-765, 2005.
[21] Gardner GHF, Gardner LW, Gregory AR. “Formation velocity and density-the diagnostic basics for stratigraphic traps”. Geophysics, 39(6), 770-780, 1974.
[22] Gendzwill DJ. “The gradational density contrast as a gravity interpretation model”. Geophysics, 35(2), 270-278, 1970.
[23] Google Maps. “Turkey Map Search”. https://www.google.com/maps/@37.5712268,38.6884163,9z (30.01.2015).
[24] Guspí F. “General 2D gravity inversion with density contrast varying with depth”. Geoexploration, 26(4), 253-265, 1990.
[25] Hansen RO. “An analytical expression for the gravity field of a polyhedral body with linearly varying density”. Geophysics, 64(1), 75-77, 1999.
[26] Holstein H. “Gravimagnetic anomaly formulas for polyhedra of spatially linear media”. Geophysics, 68(1), 157-167, 2003.
[27] Hubbert MK. “A Line-Integral method of computing the gravimetric effects of two-dimensional masses”. Geophysics, 13(2), 215-225, 1948.
[28] Jacoby WR, Çavşak H. “Inversion of gravity anomalies over spreading oceaning ridges”. Journal of Geodynamics, 39(5), 461-474, 2005.
[29] Jacoby WR, Smilde P. Gravity Interpretation: Fundamentals and Application of Gravity Inversion and Geological Interpretation. 1st ed. Germany, Berlin Heidelberg, Springer-Verlag 2009.
[30] Ketin İ. “Anadolu’nun tektonik birlikleri”. Maden Tetkik ve Arama Dergisi, 66, 20-34, 1966.
[31] Litinsky VA. “Concept of effective density: Key to gravity depth determinations for sedimentary basins”. Geophysics, 54(11), 1474-1482, 1989.
[32] Martín-Atienza B, García-Abdeslem J. “2-D gravity modeling with analytically defined geometry and quadratic polynomial density functions”. Geophysics, 64(6), 1730-1734, 1999.
[33] Murthy IVR, Rao DB. “Gravity anomalies of two-dimensional bodies of irregular cross-section with density contrast varying with depth”. Geophysics, 44(9), 1525-1530, 1979.
[34] Nagy D. “The gravitational attraction of a right rectangular prism”. Geophysics, 31(2), 362-371, 1966.
[35] Pan JJ. “Gravity anomalies of irregularly shaped two-dimensional bodies with constant horizontal density gradient”. Geophysics, 54(4), 528-530, 1989.
[36] Rao CV, Chakravarthi V, Raju ML. “Forward modelling: gravity anomalies of two-dimensional bodies of arbitrary shape with hyperbolic and parabolic density functions”. Computers and Geosciences, 20(5), 873-880, 1994.
[37] Rao DB. “Modelling of sedimentary basins from gravity anomalies with variable density contrast”. Geophysical Journal of the Royal Astronomical Society, 84(1), 207-212, 1986.
[38] Rao DB, Prakash MJ, and Ramesh Babu N. “3D and 2.5D modeling of gravity anomalies with variable density contrast”. Geophysical Prospecting, 38(4), 411-422, 1990.
[39] René RM. “Gravity Inversion using open, reject and “Shape-Ofanomaly” fill criteria”. Geophysics, 51(4), 988-994, 1986.
[40] Ruotoistenmäki T. “The gravity anomaly of two-dimensional sources with continuous density distribution and bounded by continuous surfaces”. Geophysics, 57, 623-628, 1992.
[41] Silva JBC, Costa DCL, Barbosa VCF. “Gravity inversion of basement relief and estimation of density contrast variation with depth”. Geophysics, 71(5), 151-158, 2006.
[42] Silva JBC, Medeiros WE, Barbosa VCF. “Gravity inversion using convexity constraint”. Geophysics, 65(1), 102-112, 2000.
Pamukkale Univ Muh Bilim Derg, 22(3), 233-240, 2016
A. Elmas, H. Çavşak
240
[43] Talwani M, Worzel JL, Landisman M. “Rapid gravity computations for two-dimensional bodies with application to the mendocino submarine fracture zone”. Journal of Geophysical Research, 64(1), 49-59, 1959.
[44] Vajk R. “Bouguer Corrections with varying surface density”. Geophysics, 21(4), 1004-1020, 1956.
[45] Yılmaz Y. “New evidence and model on the evolution of the southeast anatolian orogeny”. Geological Society of American Bulletin, 105(2), 251-271, 1993.
[46] Zhang J, Zhong B, Zhou X, Dai Y. “Gravity anomalies of 2-D bodies with variable density contrast”. Geophysics, 66(3), 809-813, 2001.
[47] Zhou X. “2D Vector gravity potential and line integrals for the gravity anomaly caused by a 2D mass of depth-dependent density contrast”. Geophysics, 73(6), 143-150, 2008.
[48] Zhou X. “General line lntegrals for gravity anomalies of irregular 2D masses with horizontally and vertically dependent density contrast”. Geophysics, 74(2), 11-17, 2009.
[49] Zhou X. “3D vector gravity potential and line integrals for the gravity anomaly of a rectangular prism with 3D variable density contrast”. Geophysics, 74(6), 143-153, 2009.

Thank you for copying data from http://www.arastirmax.com