[1] Lane ND, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell AT. “A survey of mobile phone sensing”. Communications Magazine, 48(9), 140-150, 2010.
[2] Reddy S, Burke J, Estrin D, Hansen M, Srivastava M. “Determining transportation mode on mobile phones”. Wearable Computers, 12th IEEE International Symposium, Pittsburgh, USA, 28 September-1 October 2008.
[3] Zheng Y, Liu L, Wang L, Xie X. “Learning transportation mode from raw GPS data for geographic applications on the web”. 17th World Wide Web Conference, Beijing, China, 21-25 April 2008.
[4] Győrbíró N, Fábián Á, Hományi G. “An activity recognition system for mobile phones”. Mobile Networks and Applications, 14(1), 82-91, 2009.
[5] Wang S, Chen C, Ma J. “Accelerometer based transportation mode recognition on mobile phone”. 2010 Asia-Pacific Conference, Shenzhen, China, 17-18 April 2010.
[6] Stenneth L, Wolfson O, Yu FS, Xu B. “Transportation mode detection using mobile phones and GIS information”. 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Chicago, IL, USA, 1-4 November 2011.
[7] Lara OD, Pérez AJ, Labrador MA, Posada JD. “Centinela: A human activity recognition system based on acceleration and vital sign data”. Pervasive and Mobile Computing, 8(5), 717-729, 2012.
[8] Widhalm P, Nitsche P, Brandie N. “Transport mode detection with realistic Smartphone sensor data”. 21st International Conference on Pattern Recognition (ICPR 2012), Tsukuba, Japan, 11-15 November 2012.
[9] Kose M, Incel OD, Ersoy C. “Online human activity recognition on smart phones”. 2nd International Workshop on Mobile Sensing. Beijing, China, 16 April 2012.
[10] Bolbol A, Cheng T, Tsapakis I, Haworth J. “Inferring hybrid transportation modes from sparse GPS data using a moving window SVM classification”. Computers, Environment and Urban Systems, 36(6), 526-537, 2012.
[11] Hemminki S, Nurmi P, Tarkoma S. “Accelerometer-based transportation mode detection on smartphones”. Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, Rome, Italy, 11-14 November 2013.
[12] Feng T, Timmermans HJP. “Transportation mode recognition using GPS and accelerometer data”. Transportation Research Part C: Emerging Technologies, 37, 118-130, 2013.
[13] Ellis K, Godbole S, Marshall S, Lanckriet G, Staudenmayer J, Kerr J. “Identifying active travel behaviors in challenging environments using GPS, accelerometers, and machine learning algorithms”. Frontiers in Public Health, 2(36), 1-8, 2014.
[14] Shin D, Aliaga D, Tunçer B, Arisona SM, Kim S, Zünd D, Schmitt G. “Urban sensing: Using smartphones for transportation mode classification”. Computers, Environment and Urban Systems, 53, 76-86, 2015.
[15] Sökün H, Kalkan H, Cetişli B. “Classification of physical activities using accelerometer signals”. Signal Processing and Communications Applications Conference (SIU), Muğla, Turkey, 18-20 April 2012.
[16] Xia H, Qiao Y, Jian J, Chang Y. “Using smart phone sensors to detect transportation modes”. Sensors, 14(11), 20843-20865, 2014.
[17] El-Rabbany A. Introduction to GPS: The Global Positioning System. 2nd ed. Norwood, USA, Artech House, 2002.
[18] Su X, Tong H, Ji P. “Activity recognition with smartphone sensors”. Tsinghua Science and Technology, 19(3), 235-249, 2014.
[19] Sağbaş E.A, Ballı S. “Akıllı Telefon Sensörlerinin Kullanımı ve Ham Sensör Verilerine Erişim”. Akademik Bilişim Konferansı, Eskişehir, Türkiye, 4-6 Şubat 2015.
[20] Chandra B, Gupta M, Gupt MP. “Robust approach for estimating probabilities in Naive-Bayes classifier”. Pattern Recognition and Machine Intelligence. Kolkata, India, 18-22 December 2007.
[21] Korb KB, Nicholson AE. Bayesian Artificial Intelligence. 2nd ed. Boca Raton, FL, USA, CRC Press, 2011.
[22] Feng T, Timmermans HJP. “Comparative evaluation of algorithms for GPS data imputation”. 13th WCTR, Rio de Janerio, Brazil, 15-18 July 2010.
[23] Akman M, Genç Y, Ankaralı H. “Random forest yöntemi ve sağlık alanında bir uygulama”. Türkiye Klinikleri, 3(1), 36-48, 2011.
[24] Samsung. “Galaxy Note 2”. http://www.samsung. com/tr/consumer/mobile-devices/smartphones/galaxy-note/GT-N7100RWDTUR (08.07.2015).
[25] Garner SR. “Weka: The waikato environment for knowledge analysis”. 2nd New Zealand Computer Science Research Students Conference, Hamilton, New Zealand, 18-21 April 1995.
[26] Weka. “Use WEKA in your Java code”. https://weka.wikispaces.com/Use+WEKA+in+your+Java+code (08.07.2015).
Thank you for copying data from http://www.arastirmax.com