You are here

Konjuge elektroaktif bir polimer eyleyicinin mikro düzeyde yer değiştirmesinin görüntü tabanlı kayan kipli denetimi

Vision based sliding mode control of micro displacement of a conjugated electroactive polymer actuator

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2016.14554
Abstract (2. Language): 
In this paper, vision based displacement control of a tri-layer conjugated electro-active polymer actuator has been performed in micrometer resolution. Sliding mode control with different reaching laws which is robust to unmodeled uncertainties has been used as the control method. A microscope has been used to observe position of the free end point of the actuator and a vision based system has been employed for feedback signal. Experimental results show that the conjugated electro-active polymer actuators can be successfully controlled in micrometer resolution and can be used in applications which includes micromanipulation like cell injection.
Abstract (Original Language): 
Bu çalışmada, üç katmanlı konjuge elektro-aktif bir polimer eyleyicinin yer değiştirme denetimi mikrometre seviyesinde görüntü tabanlı olarak yapılmıştır. Denetleme yöntemi olarak modellenmemiş belirsizliklere dayanıklı olan kayan kipli denetim farklı erişim kurallarıyla uygulanmıştır. Eyleyicinin uç noktasının yer değiştirmesini mikrometre seviyesinde gözlemlemek için mikroskop ve geri besleme sinyali oluşturmak amacıyla görüntü işleme sistemi kullanılmıştır. Elde edilen deneysel sonuçlar konjuge elektroaktif polimer eyleyicinin yer değiştirme kontrolünün mikrometre seviyesinde başarı ile yapılabildiğini ve hücre enjeksiyonu gibi mikro hareket ettirme (manipulation) içeren uygulamalarda kendine yer bulabileceğini göstermektedir.
629
635

REFERENCES

References: 

[1] Smela E. “Conjugated polymer actuators for biomedical
applications”. International Journal of Chemical
Engineering and Applications, 15(6), 481-494, 2003.
[2] Bar-Cohen Y. Electroactive polymer (EAP) actuators as
artificial muscles reality, potential, and challenges. Wash,
USA, SPIE Press, 2004.
[3] Bar-Cohen Y. Biomimetics: Biologically Inspired
Technologies. Boca Raton, USA, CRC Press, 2005.
[4] Carpi F, Kornbluh R, Sommer-Larsen P, Alici G.
“Electroactive polymer actuators as artificial muscles: are
they ready for bioinspired applications?”. Bioinspiration &
Biomimetics, 6(4), 045006, 2011.
[5] George PM, Lyckman AW, LaVan D, Hegde A, Leung Yi
Avasare T, Testa C, Alexander PM, Langer R, Sur M.
“Fabrication and Biocompatibility of Polypyrrole Implants
Suitable for Neural Prosthetics”. Biomaterials, 26(17),
3511-3519, 2005.
[6] Lee KK, Munce NR, Shoa T, Charron LG, Wright GA,
Madden JD, Yang VX. “Fabrication and characterization of
laser-micromachined polypyrrole-based artificial muscle
actuated catheters”. Sensors and Actuators A: Physical,
153(2), 230-236, 2009.
[7] McDaid AJ, Haemmerle E, Xie SQ, Aw KC. “Design, analysis,
and control of a novel safe cell micromanipulation system
with IPMC actuators”. Journal of Mechanical Design,
135(6), 061003, 2013.
0 20 40 60
-300
-200
-100
0
100
200
300
Yer Değiştirme (μm)
Zaman (s)
Referans Takip
0 20 40 60
-300
-200
-100
0
100
200
300
Yer Değiştirme (μm)
Zaman (s)
Referans Takip
0 20 40 60
-300
-200
-100
0
100
200
300
Yer Değiştirme (μm)
Zaman (s)
Referans Takip
Pamukkale Univ Muh Bilim Derg, 22(8), 629-635, 2016
(TOK’2015 - Otomatik Kontrol Türk Milli Komitesi Ulusal Toplantısı Özel Sayısı)
C. Sancak, M. Y. Coşkun, M. İtik
635
[8] Berdichevsky Y, Lo YH. “Polymer microvalve based on anisotropic expansion of polypyrrole”. Cambridge University Materials Research Society, 782, A4.4.1-7, 2003.
[9] Low LM, Seetharaman S, He KQ, Madou MJ. “Microactuators toward microcalves for responsive controlled drug delivery”. Sensors and Actuators B: Chemical, 67(1-2), 149-160, 2000.
[10] Druitt CM, Alici G. “Intelligent control of electroactive polymer actuators based on fuzzy and neurofuzzy methodologies”. IEEE/ASME Transactions on Mechatronics, 19(6), 1951-1962, 2014.
[11] Fang Y, Tan X, Alici G. “Robust adaptive control of conjugated polymer actuators”. IEEE Transactions on Control Systems Technology, 16(4), 600-612, 2008.
[12] Itik M. “Repetitive control of a trilayer conjugated polymer actuator”. Sensors and Actuators A: Physical, 194, 149-159, 2013.
[13] Alici G, Devaud V, Renaud P, Spinks G. “Conducting polymer microactuators operating in air”. Journal of Micromechanics and Microengineering, 19(2), 025017, 2009.
[14] Carpi F, DeRossi D. “Electroactive polymer-based devices for e-textiles in biomedicine”. IEEE Transactions on Information Technology in Biomedicine, 9(3), 295-318, 2005.
[15] Madden JW. Conducting Polymer Actuators, PhD Thesis, Massachusetts Institute of Technology, Cambridge, USA, 2000.
[16] Hung JY, Gao W, Hung JC. “Variable structure control: a survey”. IEEE Transactions on Industrial Electronics, 40(1), 2-22, 1993.
[17] Slotine JJ, Li W. Applied Nonlinear Control, New Jersey, USA, Pearson, 1991.
[18] Fernandez B, Hedrick JK. “Control of multivariable non-linear systems by the sliding mode method”. International Journal of Control, 46(3), 1019-1040, 1987.
[19] Otsu N. “A threshold selection method from gray-level histograms”. IEEE Transactions on Systems, Man and Cybernetics, 9(1), 62-66, 1979.

Thank you for copying data from http://www.arastirmax.com