You are here

Kesir dereceli model referans denetleyici ile görüntü işleme destekli nesne takip uygulaması

Image processing based object tracking application with fractional-order model reference controller

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2016.54036
Abstract (2. Language): 
In this paper, position control application of DC servo motor is investigated by using conventional model reference adaptive control structure with fractional order integrator. Modification of the controller is achieved by fractional order integrator in adaptation rule. Object position for reference input of control system is updated in real time by the values obtained from camera of object tracking system. Results obtained for integer order integrator and fractional-order integrator for model reference adaptive control system are compared and it is observed that the fractional-order integrator can provide faster adaptation for the system.
Abstract (Original Language): 
Bu çalışmada doğru akım servo motorun pozisyon denetimi, kesir dereceli integratörle birlikte geleneksel model referans uyarlamalı denetleyici yapısı kullanılarak incelenmiştir. Denetleyici yapısındaki iyileşme, uyarlama kuralında kesir dereceli operatörlerin kullanılmasıyla sağlanmıştır. Gerçek zamanlı çalışan sistemin referans pozisyon bilgisi, kameradan alınan değerlere göre güncellenmiştir. Sistem çıkışı, öğrenme katsayısı değiştirilerek tamsayı ve kesir dereceli uyarlama kuralına göre karşılaştırmalı olarak kıyaslanmıştır. Elde edilen sonuçlara göre kesir dereceli yaklaşımın daha iyi sonuç verdiği gözlenmiştir.
659
665

REFERENCES

References: 

[1] Rajasekhar A, Jatoth RK, Abraham A. “Design of intelligent PID/PIλDμ speed controller for chopper fed DC motor drive using opposition based artificial bee colony algorithm”, Engineering Applications of Artificial Intelligence, 29, 13-32, 2014.
[2] Li Y, Tong S, Li T. “Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping”, Nonlinear Analysis: Real World Applications, 14(1), 483-494, 2013.
[3] Yang N, Li D, Zhang J, Xi Y. “Model predictive controller design and implementation on FPGA with application to motor servo system”, Control Engineering Practice, 20,(11), 1229-1235, 2012.
[4] Osburn PV, Whitaker HP, Kezer A. “Comparative studies of model reference adaptive control systems”, Institute of Aeronautical Science, 61–39, 1961.
[5] Landau ID. Adaptive Control the Model Reference Approach, New York, USA, Marcel Dekker, 1979.
[6] Astrom KJ, Wittenmark B. Adaptive Control, Reading, USA, Addison-Wesley, 1995.
[7] Bernardo MD, Montanaro U. Olm JM, Santini S. “Model reference adaptive control of discrete time piecewise linear systems”, International Journal of Robust and Nonlinear Control, 23(7), 709-730, 2013.
[8] Mohideen KA, Saravanakumar G, Valarmathi K, Devaraj D, Radhakrishnan TK. “Real-coded Genetic Algorithm for system identification and tuning of a modified Model Reference Adaptive Controller for a hybrid tank system”, Applied Mathematical Modeling", 37(6): 3829-3847, 2013.
[9] Ravi Teja AV, Chakraborty C, Maiti S, Hori Y. “A new model reference adaptive controller for four quadrant vector controlled induction motor drives”, IEEE Transactions on Industrial Electronics, 59(10), 3757-3767, 2012.
[10] Guo L, Parsa L. “Model Reference Adaptive Control of Five-P IPM Motors Based on Neural Network”, IEEE Transactions on Industrial Electronics, 59(3), 1500-1508, 2012.
[11] Jiang B, Gao Z, Shi P, Xu Y. “Adaptive fault-tolerant tracking control of near-space vehicle using Takagi–Sugeno fuzzy models”, IEEE Transactions on Fuzzy Systems, 8(5), 1000-1007, 2010.
[12] Sadeghzadeh I, Mehta A, Zhang Y, Rabbath CA. “Fault-tolerant trajectory tracking control of a quadrotor helicopter using gain-scheduled PID and model reference adaptive control”, Annual Conference of the Prognostics and Health Management Society, Montreal, Canada, 25-29 September 2011.
[13] Dong C, Hou Y, Zhang Y, Wang Q. “Model reference adaptive switching control of a linearized hypersonic flight vehicle model with actuator saturation”, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 224(3), 289-303, 2010.
[14] Yeroglu C, Kavuran G. “Sliding mode controller design with fractional order diferentiation: applications for unstable time delay systems,” Turkish Journal of Electrical Engineering and Computer Sciences, 22(5), 1270-1286, 2014.
[15] Petras I. Fractional Order Nonlinear System, Modeling, Analysis and Simulation, London, UK, Springer, 2010.
[16] Carlson GE, Halijak CA. “Approximation of fractional capacitors (1/s)1/n by a regular Newton process”, IEEE Transactions on Circuit Theory, 11, 210– 213, 1964.
[17] Caponetto R, Dongola G, Fortuna L, Petras I. Fractional Order Systems: Modeling and Control Applications, Singapore, World Scientific, 2010.
[18] Chen YQ, Vinagre BM, Podlubny I. “Continued fraction expansion approaches to discretizing fractional order derivatives an expository review”, Nonlinear Dynamics, 38(1-4),155-170, 2004.
[19] Sastry S, Bodson M. Adaptive Control: Stability, Convergence, and Robustness, Upper Saddle River, USA, Prentice-Hall, 1989-1994.
[20] Canale M, Brunet SC. "A Lego Mindstorms NXT experiment for Model Predictive Control education," 12th European Control Conference (ECC), Zurich, Switzerland, 17-19 July 2013
[21] Sinha NK, Dicenzo CD, Szabados B. "Modeling of DC Motors for Control Applications," IEEE Transactions on Industrial Electronics and Control Instrumentation, 21(2), 84-88, 1974.
[22] Vinagre BM, Petras I, Podlubny I, Chen YQ. “Using fractional order adjustment rules and fractional order reference models in modelreference adaptive control”, Nonlinear Dynamics, 29(1-4), 269-279, 2002.

Thank you for copying data from http://www.arastirmax.com