You are here

Metakaolin ve silis dumanı içeren betonların basınç dayanımının gen ifadeli programlama ile tahmin edilmesi

Prediction of compressive strength of concretes containing metakaolin and silica fume by gene expression programming

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2016.57805
Abstract (2. Language): 
Recently, gene expression programming (GEP) have been widely used to model the human activities in many areas of civil engineering applications. In this study, the GEP models for predicting the compressive strength of concretes containing metakaolin and silica fume have been used at different days. In order to building these models, the experimental results of 195 specimens produced with 33 different mixtures were gathered from the literature. The input data used in these models have been arranged as eight parameters that cover the age of specimen and the amounts of concrete mixtures. According to these input parameters, the compressive strength values of concretes containing metakaolin and silica fume at different days are predicted in these models. The training and testing results of models have shown that GEP technique has strong potential for predicting the compressive strength values of concretes containing metakaolin and silica fume at different days.
Abstract (Original Language): 
Son zamanlarda, yapay zeka tekniklerinden biri olan gen ifadeli programlama (GEP), inşaat mühendisliği uygulamalarının birçok alanında insan faaliyetlerinin bazılarını modellemek için yaygın olarak kullanılmaktadır. Bu çalışmada da, metakaolin ve silis dumanı içeren betonların farklı günlerdeki basınç dayanımlarını tahmin etmek için GEP modelleri kullanılmıştır. Bu modelleri oluşturmak amacıyla, 33 farklı karışımda üretilen 195 numunenin deneysel sonuçları teknik literatürden elde edilmiştir. Modellerde kullanılan girdi verileri numunenin yaşı ve beton karışım miktarlarını içerecek bir formatta 8 parametreli olarak düzenlenmiştir. Bu girdi parametrelerine göre modellerde metakaolin ve silis dumanı içeren betonların farklı günlerdeki basınç dayanımı değerleri tahmin edilmiştir. Modellerdeki eğitim ve test sonuçları, metakaolin ve silis dumanı içeren betonların faklı günlerdeki basınç dayanımı değerlerini tahmin etmek için GEP tekniğinin güçlü potansiyele sahip olduğunu göstermiştir.
238
244

REFERENCES

References: 

1] Zhang MH, Malhotra VM. “Characteristics of a thermally
activated alumino-silicate pozzolanic material and its use
in concrete”. Cement and Concrete Research, 25(8),
1713-1725, 1995.
[2] Parande AK, Babu BR, Karthik MA, Deepak Kumaar KK,
Palaniswamy N. “Study on strength and corrosion
performance for steel embedded in metakaolin blended
concrete/mortar”. Construction and Building Materials,
22(3), 127-134, 2008.
[3] Khatib JM, Kayali O, Siddique R. “Dimensional Change and
Strength of Mortars Containing Fly Ash and Metakaolin”.
Journal of Materials in Civil Engineering, 21(9), 523-528,
2009.
[4] Sabir BB, Wild S, Bai J. “Metakaolin and calsined clays as
pozzolans for concrete: A review”. Cement and Concrete
Composites, 23(6), 441‐454, 2001.
[5] Badogiannis E, Papadakis VG, Chaniotakis E, Tsivilis S.
“Exploitation of poor Greek kaolins: strength
development of metakaolin concrete and evaluation by
means of k‐value”. Cement and Concrete Research, 34(6),
1035‐1041, 2004.
[6] Khatib JM, Hibbert JJ. “Selected engineering properties of
concrete incorporating slag and metakaolin”.
Construction and Building Materials, 19(6), 460‐472,
2005.
[7] Tautanji AH, Bayasi Z. “Effect of curing procedures on
properties of silica fume concrete”. Cement and Concrete
Research, 29(4), 497-501, 1999.
[8] Brooks JJ, Megat Johari MA. “Effect of metakaolin on creep
and shrinkage of concrete”. Cement and Concrete
Composites, 23(6), 495-502, 2001.[9] Caldarone MA, Gruber KA, Burg RG. “High reactivity metakaolin: A new generation mineral admixture”. Concrete International, 16(11), 37-41, 1994.
[10] Poon, CS, Kou SC, Lam L. “Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete”. Construction and Building Materials, 20(10), 858-865, 2006.
[11] Wong HS, Razak HA. “Efficiency of calcined kaolin and silica fume as cement replacement material for strength performance”. Cement and Concrete Research, 35(4), 696-702, 2005.
[12] Kim HS, Lee SH, Moon HY. “Strength properties and durability aspects of high strength concrete using Korean metakaolin”. Construction and Building Materials, 21(6), 1229-1237, 2007.
[13] Mousavi SM, Aminian P, Gandomi AH, Alavi AH, Bolandi H. “A new predictive model for compressive strength of HPC. Using gene expression programming”. Advances in Engineering Software, 45(1), 105-114, 2012.
[14] Sarıdemir M. “Effect of specimen size and shape on compressive strength of concrete containing fly ash: Application of genetic programming for design”. Materials & Design, 56, 297-304, 2014.
[15] Chen L, Kou CH, Ma SW. “Prediction of slump flow of high-performance concrete via parallel hyper-cubic gene-expression programming”. Engineering Applications of Artificial Intelligence, 34, 66-74, 2014.
[16] Kara IF. “Prediction of shear strength of FRP-reinforced concrete beams without stirrups based on genetic programming”. Advances in Engineering Software, 42(6), 295-304, 2011.
[17] Gandomi AH, Alavi AH, Kazemi S, Gandomi M. “Formulation of shear strength of slender RC beams using gene expression programming, part I: Without shear reinforcement”. Automation in Construction, 42, 112-121, 2014.
[18] Sarıdemir M. “Genetic programming approach for prediction of compressive strength of concretes containing rice husk ash”. Construction and Building Materials, 24(10), 1911-1919, 2010.
[19] Nazari A, Riahi S. “Prediction split tensile strength and water permeability of high strength concrete containing TiO2 nanoparticles by artificial neural network and genetic programming”. Composites Part B: Engineering, 42(3), 473-488, 2011.
[20] Özcan F. “Gene expression programming based formulations for splitting tensile strength of concrete”. Construction and Building Materials, 26(1), 404-410, 2012.
[21] Gandomi AH, Alavi AH, Ting TO, Yang XS. Intelligent modeling and prediction of elastic modulus of concrete strength via gene expression programming. Advances in Swarm Intelligence. Volume 7928 of the series Lecture Notes in Computer Science, 564-571, 2013.
[22] Bayazidi AM, Wang GG, Bolandi H, Alavi AH, Gandomi AH. “Multigene genetic programming for estimation of elastic modulus of concrete”. Mathematical Problems in Engineering, 2014, 1-10, 2014.
[23] Koza J. “Genetic Programming: On the Programming of Computers by Means of Natural Selection”. MIT press, USA, 1992.
[24] Ferreira C. “Gene expression programming: A new adaptive algorithm for solving problems”. Complex Systems, 13(2), 87-129, 2001.
[25] Lopes HS, Weinert WR. A gene expression programming system for time series modeling. In: Proceedings of XXV Iberian Latin American Congress on Computational Methods in Engineering (CILAMCE), Recife (Brazil), 10-12/November, 1-13, 2004.
[26] Ferreira C. “Genetic representation and genetic neutrality in gene expression programming”. Advances in Complex Systems, 5(4), 389-408, 2002.
[27] Çolak O. “CNC Freze Tezgâhı için Kesme Parametrelerinin Akıllı Yöntemlerle Elektronik Ortamda Optimizasyonu”. Doktora Tezi, Süleyman Demirel Üniversitesi, Isparta, Türkiye, 2006.

Thank you for copying data from http://www.arastirmax.com