You are here

Kağıt endüstrisi atıksularının yeniden kullanımında uygun nanofiltrasyon membranların belirlenmesi

Determination of nanofiltration membranes for reuse of paper mill industry wastewater

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2016.33340
Abstract (2. Language): 
In this study operating pressure driven systems which is known their efficiency in literature, for paper and pulp industry wastewaters in batch conditions were executed by using NFloose/NFtight membrane combination. The batch NFloose/NFtight experiments were respectively applied at 12 and 20 bars by conventional membrane filtration process, at a stirring rate of 300 cycle/min, at pH 10 and at a temperature of 25 °C. Determination of most suitable membrane at batch operating conditions were made by using 8 different membranes (for NFloose NP010, NFG, MPF36 and CK3001 and for NFtight NP030, NF270, DS-5DK, ESNA) through organic matter removal and filtrate flux values. In NFloose membranes at a filtrate flux of 4.12 L/m2 h removal of 61.0% TOC and 76.9% COD and MPF36 membrane was determined to be best NFloose membrane. The filtrate water obtained by MPF36 were later passed through NFtight membranes. In all NFtight membranes generally the organic matter removal efficiency was good and ESNA was selected to be the best membrane in terms of effluent quality by obtaining organic matter removal at rates of 93.9% TOC and 94.2% COD with 10.05 L/m2 h filtrate flux. From this point of view, in short term operation of paper wastewaters by pressure driven NFloose/NFtight integrated membrane system, it was seen that good quality of outlet water with 7.15 pH and a conductivity coefficient of 144 μS/cm and at 13 mg/L TOC and 28 mg/L COD concentrations could be obtained also that good quality of reuse water could be produced in terms of aimed effluent water.
Abstract (Original Language): 
Bu çalışmada, kağıt atıksuları için literatürde etkinliği bilinen basınç sürücülü sistemlerin kesikli şartlarda işletimleri, NFgevşek/NFsıkı membran sistem kombinasyonu kullanılarak yerine getirilmiştir. Kesikli NFgevşek/NFsıkı deneyleri sırasıyla 12 ve 20 barda klasik membran filtrasyon yöntemiyle 300 rpm’lik karıştırma hızında, pH 10’da ve 25 °C sıcaklıkta uygulanmıştır. Kesikli işletim şartlarında kullanılacak en uygun membran türlerinin tespiti NFgevşek için NP010, NFG, MPF36 ve CK3001 ve NFsıkı için NP030, NF270, DS-5DK, ESNA olmak üzere toplamda 8 farklı membran kullanılarak, organik madde giderimi ve süzüntü akı değerleri üzerinden belirlenmiştir. NFgevşek membranlarda 4.12 L/m2 sa’lik süzüntü akısında, %61.0 TOK ve %76.9 KOİ giderimi ile MPF36 membran en iyi NFgevşek membran olarak belirlenmiştir. Sürekli işletimle MPF36 ile elde edilen süzüntü suyu daha sonra NFsıkı membranlardan geçirilmiştir. Tüm NFsıkı membranlarda, genel olarak iyi seviyelerde organik madde giderim etkinliği elde edilmiş olmakla birlikte 10.05 L/m2 sa süzüntü akısında, %93.9 TOK ve %94.2 KOİ oranlarında organik madde giderimi sağlanarak en iyi çıkış suyu kalitesi eldesi bakımından ESNA uygun membran olarak seçilmiştir. Bu noktadan hareketle, kâğıt atıksularının etkinliği bilinen basınç sürücülü NFgevşek/NFsıkı bütünleşik membran sistemiyle kısa süreli işletimlerinde, 7.35 pH ve 144 S/cm iletkenlik değerlerinde 13 mg/L TOK ve 28 mg/L KOİ konsantrasyonlarında iyi kalitede arıtılmış çıkış suyunun elde edilebildiği, ayrıca hedeflenen çıkış suyu açısından, iyi kalitede yeniden kullanım suyu üretilebildiği görülmüştür.
280
288

REFERENCES

References: 

[1] Köken E, Büyükkamacı N. “Kağıt endüstrisi atıksu arıtma tesislerinde çamur işleme ünitelerinin toplam maliyete etkisi”. İTÜ Dergisi/e, 20(1), 66-76, 2010.
[2] Tarlan E, Yetiş Ü, Dilek F. “Kağıt sanayii atıksularının algler ile arıtım kinetiği”. Su Ürünleri Dergisi, 18(1), 199-210, 2001.
[3] Camcıoğlu Ş, Özyurt B, Hapoğlu H. “Elektrokoagülasyon yöntemiyle kağıt atık suyu arıtımında pH kontrolü”. Anodolu Üniversitesi Bilim ve Teknoloji Dergisi, 16, 107-115, 2015.
[4] Bennani Y, Kosutic K, Drazevic E, Rozie M. “Waste water from wood and pulp industry treated by combination of coagulation, adsorption on modified clinoptilolite tuff and membrane processes”. Environmental Technology, 33(10), 1159-1166, 2012.
[5] Tambosi J, Domenico M, Schirmer W, Jose H, Moreira R. “Treatment of paper and pulp wastewater and removal odorous compounds by a fenton-like process at the pilot scale”. Chemical Technology and Biotechnology, 81, 1426-1432, 2006.
[6] Cokay Catalkaya EC, Kargi F. “Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: a comparative study”. Journal of Hazardous Materials, B 139, 244-253,2007.
[7] Negaresh E, Antony A, Bassandeh M, Richardson D, Leslie G. “Selective separation of contaminants from paper mill effluent using nanofiltration”. Chemical Engineering Reserach and Design, 90, 576-583,2012.
[8] Gönder Z, Arayıcı S, Barlas H. “Advanced treatment of pulp and paper mill wastewater by nanofiltration process: effects of operating conditions on membrane fouling”. Seperation and Purification Technology, 76, 292-302, 2011.
[9] Gönder Z, Arayıcı S, Barlas H. “Treatment of pulp and paper mill wastewater using ultrafiltration process: optimization of the fouling and rejections”. Industrial & Engineering Chemistry Research, 51, 6184-6195, 2012.
[10] Kaya Y, Gönder ZB, Vergili I, Barlas H. “The effect of transmembrane pressure and pH on treatment of paper machine process waters by using a two-step nanofiltration process: Flux decline analysis”. Desalination, 250(1),150-157,2010.
[11] Hermosilla D, Merayo N, Ordonez R, Blanco A. “Optimization of conventional fenton and ultraviolet-asisted oxidation processes for the treatment of reverse osmosis retentate from a paper mill”. Waste Management, (32), 1236-1243, 2012.
[12] Kosutic K, Dolar D, Kunst B. “ On experimental parameters characterizing the reverse osmosis and nanofiltration membranes’ active layer”. Journal of Membrane Science, 282(1-2), 109-114, 2006.
[13] Lin J, Ye W, Zeng H, Yang H, Shen J, Darvishmanesh S, Luis P, Sotto A, Bruggen BV. “Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes”. Journal of Membrane Science, 477, 183-193, 2015.
[14] Moravia WG, Amaral MCS, Lange LC. “Evaluation of landfill leachate treatment by advanced oxidative process by Fenton’s reagent combined with membrane separation system”. Waste Management, 33(1), 89-101, 2013.
[15] Perez-Gonzales A, Urtiaga AM, Ibanez R, Ortiz I. “State of the art and review on the treatment technologies of water reverse osmosis concentrates”. Water Research, 46(2), 267-283, 2012.
[16] E.W. Rice, R.B. Baird, A.D. Eaton, L.S. Clesceri, APHA, Standard methods for the examination of water and wastewater, 21th Ed. American Public Health Association Publication, Washington, USA, 2012.
[17] Microdyn-Nadir GmbH, “Specifications”.
http://www.microdynnadir.com/fileadmin/user_upload/downloads/catalogue.pdf .(15.06.2015).
[18] Shanmuganathan S, Vigneswaran S, Nguyen T.V, Loganathan P, Kandasamy J. “Use of nanofiltration and reverse osmosis in reclaiming micro-filtered biologically treated sewage effluent for irrigation”. Desalination, 364, 119-125, 2015.
[19] Arkell A, Krawczyk H, Thuvander J, Jönsson AS, “Evaluation of membrane performance and cost estimates during recovery of sodium hydroxide in a hemicellulose extraction process by nanofiltration”. Separation and Purification Technology, 118, 387-393, 2013.
[20] Liikanen R, Miettinen I, Laukkanen R. “Selection of NF membrane to improve quality of chemically treated surface water”. Water Research, 37(4), 864-872, 2003.
[21] Cassano A, Adzet J, Molinari R, Buonomenna MG, Roig J, Drioli E. “Membrane treatment by nanofiltration of exhausted vegetable tannin liquors from the leather industry”. Water Research, 37(10), 2426-2434, 2003.
[22] Koch Membrane Systems ,Inc. “KMS Flat sheet membrane samples”.http://www.kochmembrane.com/PDFs/Data-Sheets/Test/flat-sheet-sample-data....(15.06.2015).
[23] Sterlitech Corporation. “Sterlitech HP 4750 stirred cell”.http://www.sterlitech.com. (15.06.2015).
Pamukkale Univ Muh Bilim Derg, 23(3), 279-287, 2017
E. Can Doğan, C. Aydıner, B. Kırıl Mert, A. O. Narcı, Ö. Kılıçoğlu, E. Durna, U. A. Akbacak
287
[24] Hesampoura M, Tanninen J, Reinikainen SP, Platt S, Nyströma M. “Nanofiltration of single and mixed salt solutions: Analysis of results using principal component analysis (PCA)”. Chemical Engineering Research and Design, 88(12), 1569-1579, 2010.
[25] Wang YN, Tang CY. “Protein fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes-the role of hydrodynamic conditions, solution chemistry and membrane properties”. Journal of Membrane Science, 376(1-2), 275-282, 2011.
[26] Xu P, Drewes JE. “Viability of nanofiltration and ultra-low pressure reverse osmosis membranes for multi-beneficial use of methane produced water”. Separation and Purification Technology, 52(1), 67-76, 2006.
[27] Ciputra S, Antony A, Phillips R, Richardson D, Leslie G. “Comparison of treatment options for removal of recalcitrant dissolved organic matter from paper mill effluent”. Chemosphere, 81(1), 86-91, 2010.
[28] Mauchauffee S, Denieul MP, Coste M. “Industrial wastewater re-use: Closure of water cycle in the main water consuming industries-the example of paper mills”. Environmental Technology, 33(19-21), 2257-2262, 2012.
[29] Ordónez R, Hermosilla D, Pío IS, Blanco A. “Evaluation of MF and UF as pretreatments prior to RO applied to reclaim municipal wastewater for freshwater substitution in a paper mill: A practical experience”. Chemical Engineering Journal, 166(1), 88-98, 2011.

Thank you for copying data from http://www.arastirmax.com