You are here

Tornalama işleminde yüzey pürüzlülüğü değerlerinin istatistiksel incelenmesi

Statistical analysis of surface roughness in turning process

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2016.01212
Abstract (2. Language): 
In this study, for the turning of AISI 1040 steel that has cylindrical shape and hardened up to 46 HRc, Taguchi L16 experimental design was created according to the parameters of cutting speed, feed rate and cutting depth which consist from four levels. Formed in result of turning, the total surface roughness (Rt) were measured. Regression models have been built. Taguchi analyzes were carried out utilizing by MINITAB 14 Program for measured values of Rt. The closest results of the test results, generated for the Rt regression model, were obtained with 99.8% specify coefficients in order second degrees regression model. Signal/Noise (S/N) ratios were determined in design of the Taguchi. In ANOVA analysis, it was obtained as an effect of the 95% confidence level on Rt values in order feed rate, cutting depth and cutting speed. The result of the regression model and Taguchi analysis was determined as feed rate to be the optimum parameter for Rt values.
Abstract (Original Language): 
Bu araştırmada, 46 HRc sertlikteki silindir şekle sahip AISI1040 çeliği için dörder seviyeden oluşan kesme hızı, ilerleme ve talaş derinliği parametrelerine göre Taguchi L16 deney tasarımı oluşturulmuştur. Tornalama sonucu oluşan yüzey pürüzlülüğü (Rt) değerleri ölçülmüştür. Ölçülen Rt değerleri için MINITAB14 programından yararlanılarak çoklu regresyon modelleri oluşturulmuş ve Taguchi analizleri gerçekleştirilmiştir. Rt için oluşturulan regresyon modellerinde deney sonuçlarına en yakın sonuçlar %99.8 belirtme katsayısı ile ikinci dereceden çoklu regresyon modeliyle elde edilmiştir. Taguchi tasarımında sinyal/gürültü (S/N) oranları belirlendi. ANOVA analizinde sırası ile ilerleme, talaş derinliği ve kesme hızının Rt değerine %95güven düzeyinde etki ettiği elde edilmiştir. Oluşturulan regresyon modelleri ve Taguchi analizi sonucu Rt üzerinde en etkin parametrenin ilerleme olduğu sonucuna varılmıştır.
390
394

REFERENCES

References: 

[1] Ahmed
GS
, Quadri SSH, Mohiuddin MS. "Optimization of feed and radial force in turning process by using Taguchi design approach". Materials Today: Proceedings, 2(4),
3277-3285, 2015.
[2] Camposeco-Negrete C. "Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA". Journal of Cleaner Production, 53, 195-203, 2013.
[3] Selvaraj DP, Chandramohan P, Mohanraj M. "Optimization of surface roughness, cutting force and tool wear of nitrogen alloyed duplex stainless steel in a dry turning process using Taguchi method". Measurement, 49, 205-215, 2014.
393
Pamukkale Univ Muh Bilim Derg, 23(4), 390-394,2017
H. Akkuş, H. Yaka, L. Uğur
[4] Debnath S, Reddy MM, Yi QS. "Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method". Measurement, 78, 111-119, 2016.
[5] Risbood KA, Dixit US, Sahasrabudhe AD. "Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process". Journal of Materials Processing Technology, 132(1), 203-214, 2003.
[6] Tebassi H, Yallese M, Meddour I. "A new method for evaluation nominal coefficient of friction and frictional forces in turning and inserts characterization using cutting forces profiles". Engineering Solid Mechanics, 4(1), 1-10, 2016.
[7] Thamizhmanii S, Saparudin S, Hasan S. "Analyses of surface roughness by turning process using Taguchi method". Journal of Achievements in Materials and Manufacturing Engineering, 20(1-2), 503-506, 2007.
[8] Yang WP, Tarng YS. "Design optimization of cutting parameters for turning operations based on the Taguchi method, Journal of Materials Processing Technology" 84(1), 122-129, 1998.
[9] Krishankant JT, Bector M, Kumar R. "Application of Taguchi method for optimizing turning process by the effects of machining parameters". International Journal of Engineering and Advanced Technology, 2(1), 263-274, 2012.
394
[10] Sahu S, Choudhury BB. "Optimization of surface roughness using Taguchi methodology & prediction of tool wear in hard turning tools, materials today". Proceedings, 2(4), 2615-2623, 2015.
[11] Mandal N, Doloi B, Mondal B. "Surface roughness prediction model using zirconia toughened alumina (ZTA) turning inserts: Taguchi method and regression analysis". Journal of The Institution of Engineers (India): Series C, 97(1), 77-84, 2016.
[12] Asiltürk İ, Akkuş H. "Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method". Measurement, 44(9), 1697-1704, 2011.
[13] Agrawal A, Goel S, Rashid WB, Price M. "Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRc)". Applied Soft Computing, 30, 279-286, 2015.
[14] Nalbant M, Gökkaya H, Sur G. "Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning". Materials & Design, 28(4), 1379-1385, 2007.
[15] Tekaüt İ, Günay M, Şeker U. "Optimization of cutting parameters and chip breaker form by Taguchi method in turning operations". 6th International Advanced Technologies Symposium (LATS'11), Elazığ, Turkey,
16-18 May 2011.

Thank you for copying data from http://www.arastirmax.com