You are here

Enerji tüketebilen çelik yastıkların tipik bir betonarme çerçeve davranışına etkisi

The effect of energy dissipating steel cushions on the behaviour of a typical reinforced concrete frame

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2016.57701
Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Seismic behavior of reinforced concrete frame type structures can be improved by adding energy dissipating metallic devices. Metal devices can dissipate the earthquake input energy by means of plastic deformation when they are located within the bays of the structure. New generation structural design methods tend to concentrate the plastic deformations accumulated on replaceable steel elements rather than on structural members and therefore decrease the damage level. In this study, experimental and analytical investigation was conducted in order to determine the hysteretic behaviour of energy dissipative steel cushion shaped metal elements with variable thicknesses. Shear tests of energy dissipative steel cushions were performed in the Structural and Earthquake Engineering Laboratory (STEELAB) of ITU. Analytical model was developed for the steel cushions and the model was used in the nonlinear analysis of a frame system that was extracted from an actual model structure. The analysis results showed that depending on the thickness, steel cushions increase the strength of the structure in the range of 5% to 20%. 18 mm thick steel cushion instrumented frame dissipates 5 times more energy than the bare frame. Steel cushion having the same thickness dissipated 55% of the total energy of the frame system.
Abstract (Original Language): 
Betonarme çerçeve tipi yapıların deprem davranışları, enerji tüketebilen metal elemanlar kullanılarak iyileştirilebilmektedir. Metal elemanlar, yapının çerçeve gözlerine yerleştirildiğinde yapıya giren deprem enerjisini plastik deformasyon yaparak tüketebilmektedir. Yeni nesil yapı tasarımı, plastik şekil değiştirmelerin yapısal elemanlardan çok, deprem sonrasında yenisiyle değiştirilebilen metal elemanlarda yoğunlaşması sağlanarak hasarının azaltılması eğilimindedir. Bu çalışmada enerji tüketme özelliği olan farklı kalınlıklardaki yastık görünümlü metal elemanların çevrimsel davranışı, deneysel ve analitik olarak incelenmiştir. Farklı kalınlıklardaki çelik yastıkların kayma deneyleri İstanbul Teknik Üniversitesi Yapı ve Deprem Mühendisliği Laboratuvarında (STEELAB) gerçekleştirilmiştir. Çelik yastıklar için analitik model geliştirilmiş ve gerçek betonarme yapıdan çıkartılmış bir çerçevenin lineer olmayan analizinde kullanılmıştır. Analiz sonuçları, levha kalınlığına bağlı olarak çelik yastıkların betonarme çerçeve dayanımını %5 ile %20 arasında değişen oranlarda artırdığını göstermektedir. Kalınlığı 18 mm olarak seçilen çelik yastığın kullanıldığı betonarme çerçeve yalın çerçeveden 5 kat daha fazla enerji tüketmiştir. Aynı kalınlıktaki çelik yastık, çerçeve sistemin toplam enerjisinin %55’ini tüketmiştir.
637
645

REFERENCES

References: 

[1] Kelly JM, Skinner RI and Heine AJ. “Mechanisms of energy absorption in special devices for use in earthquake resistant structures”. Bulletin of New Zealand National Society for Earthquake Engineering, 5(3), 63-88, 1972.
[2] Skinner RI, Kelly JM, Heine AJ. "Hysteresis dampers for earthquake-resistant structures". Earthquake Engineering and Structural Dynamics, 3, 287-296, 1975.
[3] Bergman DM, Goel SC. “Evaluation of cyclic testing of steel-plate devices for added damping and stiffness”. University of Michigan, Ann Arbor Michigan, USA, Rep. No. UMCE 87-10, 1987.
[4] Tsai KC, Chen HW, Hong CP, Su YF. “Design of steel triangular plate energy absorbers for seismic resistant construction”. Earthquake Spectra, 19(3), 505-528, 1993.
[5] Chan RWK, Albermani F. “Experimental study of steel slit damper for passive energy dissipation”. Engineering Structures, 30(2008), 1058-1066, 2007.
[6] Chan R, Albermani F, Williams M. “Evaluation of yielding shear panel device for passive energy dissipation”. Journal of Constructional Steel Research, 65(2), 260-268, 2009.
[7] Priestley MJN. “Overview of PRESSS research program”. Journal of Precast Concrete Institute, 36(4), 50-57, 1991.
[8] Shultz A.E., Magana R.A. “Seismic behavior of connections in precast concrete walls”. Proceedings of Mete A. Sozen Symposium, Michigan, USA, 1996.
[9] Mazzolani FM. “Innovative metal systems for seismic upgrading of RC structures”. Journal of Constructional Steel Research, 64(2008), 882-895, 2007.
[10] Alehashem SMS, Keyhani A, Pourmohammad H. “Behavior and performance of structures equipped with ADAS & TADAS dampers (a Comparison with Conventional Structures)”. 14th World Conference on Earthquake Engineering, Beijing, China, 12-17 October 2008.
[11] Oh SH, Kim YJ, Ryu HS. “Seismic performance of steel structures with slit dampers”. Engineering Structures, 31(9), 1997-2008, 2009.
[12] Sahoo DR, Rai DC. “Seismic strengthening of non-ductile reinforced concrete frames using aluminum shear links as energy-dissipation devices”. Engineering Structures, 32(11), 3548-3557, 2010.
[13] Maleki S, Bagheri, S. "Pipe damper, Part I. experimental and analytical study”. Journal of Constructional Steel Research, 66(8-9), 1088-1095, 2010.
[14] Maleki S, Mahjoubi S. “Dual-pipe damper”. Journal of Constructional Steel Research, 85, 81-91, 2013.
[15] Ozkaynak H, Gullu A, Gokse T, Khajehdei A, Mahdavi M, Azizisales F, Smyrou E, Bal IE, Yuksel E, Karadogan F. “Energy dissipater steel cushions”. 2nd European Conference on Earthquake Engineering and Seismology, Istanbul, Turkey, 25-29 August 2014.
[16] Gullu A, Yuksel E, Karadogan F. “Experimental and analytical evaluation of special energy dissipater cushions”. 7th Abaqus Users Meeting, Istanbul, Turkey, 6-7 November 2014.
Pamukkale Univ Muh Bilim Derg, 23(6), 637-645, 2017
H. Özkaynak
645
[17] Karalis A, Georgiadi-Stefanidi KA, Salonikios TN, Stylianidis KC, Mistakidis ES. “Experimental and numerical study of the behaviour of high dissipation metallic devices for the strengthening of existing structures”. Proceedings of the III ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Corfu, Greece, 26-28 May 2011.
[18] Colombo A, Lamperti M, Negro P, Toniolo G. “Design Guidelines for Wall Panel Connections”. Joint Research Center (JRC), Ispra, Italy, Technical Report, EUR 27934 EN, 2016.
[19] FEMA-461. “Federal Management Emergency Agency, Interim Testing Protocols For Determining the Seismic Performance Characteristics of Structural and Non-structural Components”. FEMA 461, Washington, DC, 2007.
[20] Jacobsen LS. “Damping in composite structures”. 2nd World Conference on Earthquake Engineering, Tokyo, Japan, 11-18 July 1960.
[21] SeismoStruct-A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures. “Standard Search”. www.seismosoft.com.
[22] Güllü A, Ozkaynak H, Khajehdehı A, Gökçe T, Azizisales F, Bal İE, Smyrou E, Yüksel E, Karadoğan F. “Derivation of the closed form equations for the energy dissipative steel cushions”. 14th World Conference on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, San Diego, Ca USA, 9-11 September 2015.
[23] Bayındırlık ve İskan Bakanlığı. “Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik 2007”. İnşaat Mühendisleri Odası İzmir Şubesi, İzmir, Türkiye, 2009.

Thank you for copying data from http://www.arastirmax.com