You are here

Malzeme özelliklerinin ve yalıtım sisteminin isi köprüsü davranışına etkisinin incelenmesi

The effect of material properties and isolation system on thermal bridge behavior

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2016.53496
Abstract (2. Language): 
Reducing the energy consumption is very important for the development of the countries. For this reason, energy consumption at the buildings is very important. It is necessary to know behaviours of thermal bridges, affects at insulation system utilized and materials constituting the thermal bridges very well to cut down thermal loss in buildings, this study searches affects at change in the thermal conductivity coefficients of concrete, wall and insulation materials used in the terrace floors on the thermal bridges . For this reason, apart from literature, examination on 9 insulation sections most frequently used for the terrace floors at reinforced concrete buildings in Turkey were realized. What is the effect of changes at insulation system and/or the concrete and the wall materials on the thermal bridge?". Answers to this question was researched. Calculations were made for temperature and heat flux distributions at wall-floor-beam combinations at different insulation states considering plastered state for first degree day area, as mentioned in TS825 Standard. For the calculations, QuickField 5.6 program, which gives realistic values and utilizes finite elements method was used. With the results of this study, it was seen how the behavior of the variance of the concrete, wall and insulation heat conductivity values at the thermal bridges changes in a two-dimensional way. As a result of the calculations, the biggest heat loss was obtained when thermal conductivity coefficient of the concrete increased. Besides, answers are given to questions such as which is the most productive section used in terrace floors?
Abstract (Original Language): 
Enerji tüketiminin azaltılması ülkelerin gelişimi için çok önemlidir. Yapılarda enerji tüketimi bu nedenle büyük önem arz etmektedir. Binalarda ısı kaybını azaltmak için ısı köprülerini, ısı köprülerini oluşturan yalıtım sisteminin etkilerini ve kullanılan malzemenin davranışlarını çok iyi bilmek gerekmektedir. Bu çalışma, teras katlarda beton, duvar ve yalıtım malzemelerinin ısıl iletkenlik katsayılarının değişiminin ısı köprüsüne etkilerini incelenmektedir. Bunun için literatürden farklı olarak Türkiye'de betonarme binaların teras katları için en sık kullanılan 9 kesit üzerinde inceleme gerçekleştirilmiştir. "Yalıtım sistemi, beton ve/veya duvar malzemesinin değişiminin ısı köprüsüne etkisi ne olmaktadır?" sorusuna yanıt aranmıştır. Hesaplamalar TS 825'te belirtilen birinci derece gün bölgesi için sıvalı durum göz önünde bulundurularak yapılmış olup farklı yalıtım çeşitlerinde duvar-döşeme-kiriş birleşimlerinin ısı akıları ve sıcaklıkları hesaplanmıştır. Hesaplamalarda gerçeğe yakın değerler veren ve sonlu elemanlar metodunu kullanan, QuickField 5.6 programından yararlanılmıştır. Bu çalışmanın sonuçları ile ısı köprülerinde beton, duvar ve yalıtım malzemelerinin ısıl iletkenlik değerlerinin değişiminin iki boyutlu olarak nasıl değiştiği görülmektedir. En büyük ısı kaybı, betonun ısıl iletkenlik katsayısının artması sonucunda elde edilmektedir. Ayrıca elde edilen sonuçlarla teras katlarda kullanılan yalıtım çeşitlerinin hangisinin daha verimli olduğu sorularına da yanıt verilmektedir.
687
693

REFERENCES

References: 

[1] Buyukakın MK, Oztuna S, Mihlayanlar E. "Thermal analysis of thermal bridges of concrete beams in buildings". International Scientific Conference UNITECH, Gabrovo, 21-22 November 2014.
[2] Dilmac S, Guner A, Senkal F, Kartal S. "Simple method for calculation of heat loss through floor/beam-wall intersections according to ISO 9164". Energy Conversetion and Management, 48(3), 826-835, 2007.
[3] Dilmac S, Alamut O. "Comparison of international thermal analysis methods of thermal bridges". 1st International Exergy, Energy and Environment Symposium, Izmir,
Turkey, 13-17 July 2003.
[4] Dilmac S, Can A, Kartal S. "The effect of climatic
conditions and insulation systems on the thermal behavior of floors". Tesisat Mühendisliği Dergisi, 82, 49-65, 2004.
[5] TS 825 Turkish Thermal Insulation Standard "Thermal
Insulation Requirements for Buildings", Ankara, Turkey,
May, 2008.
[6] EN 832 "Thermal Performans of Building, Calculation of Energy Use for Heating". Residential Buildings-2000, European Committee for Standardization, Brussels, 2000.
[7] ISO 9164 "Thermal Insulation-Calculation of space Heating Requirements for Residential Buildings". International Organization for Standards, Geneva, 1989.
[8] TS EN ISO 10221-1 "Thermal Bridges in Building
Constructions - Heat flows and surface temperatures" Part1: General calculation methods, Turkish Standards
Institute, Ankara, 2000.
[9] TS EN ISO 10211-2 'Thermal Bridges in Buildings Constructions-Heat flows and surface temperatures" Part2: Linear Thermal Bridges, Turkish Standards
Institute, Ankara, 2000.
[10] Mao G, Johonnesson G. "Dynamic calculation of thermal
bridges". Energy and Buildings, 26(3), 233-240, 1997. [11] Salgon JJ, Neveu A. "Application of modal analysis to
modelling of thermal bridges in buildings". Energy and
Buildings, 10(2), 109-120, 1987. [12] Hassid S. "Thermal bridges across multilayer walls:
An integral approach". Building and Environment,
25(2), 143-150, 1990. [13] Hassid S. "Thermal bridges in homogeneous walls: A
simplified approach". Building and Environment,
24(3), 259-264, 1989. [14] Kosny J, Christian JE. "Thermal evaluation of several
configuration of insulation and structural materials for
some metal stud walls". Energy and Buildings,
22(2), 157-163, 1995.
[15] Clark MR, McCann DM, Forde MC. "Application of infrared thermography to nondestructive testing of concrete and masonry bridges". NDT& E International, 36(4), 265-275,
2003.
[16] Kosny J, Kossecka E."Multi-dimensional heat transfer through complex building envelope assemblies in hourly energy simulation programs". Energy and Buildings, 34(5), 445-454, 2002.
[17] Larbi BA. "Statical modeling of heat transfer for thermal bridges of buildigs". Energy and Buildings, 37(9),
945-951, 2005.
692
Pamukkale Univ Muh Bilim Derg, 23(6), 687-693,2017
G. Gaygusuzoğlu, A. Bakış
[18] Theodosiou TG, Papadopoulos AM. "The impact of thermal bridges on the energy demand of buildings with double brick wall constructions". Energy and Buildings, 40(11), 2083-2089, 2008.
[19] Evola G, Margani G, Marletta L. "Energy and cost evaluation of thermal bridge correction in Mediterranean climate". Energy and Buildings, 43(9), 2385-2393, 2011.
[20] Berggren B, Wall M. "Calculation of thermal bridges in (Nordic) building envelopes-risk of performance failure due to inconsistent use of methodology". Energy and Buildings, 65, 331-339, 2013.
[21] Garay R, Uriarte A, Ines A. "Performance assessment of thermal bridge elements into a full scale experimental study of a building façade". Energy and Buildings, 85, 579-591, 2014.
[22] Larbi BA. "Statical modeling of heat transfer for thermal bridges of buildigs". Energy and Buildings, 37(9), 945-951, 2005.
693
[23] Gao Y, Roux JJ, Zhao LH, Jiang Y. "Dynamic building simulation: a low order model for thermal bridges losses". Energy and Buildings, 40(12), 2236-2240, 2008.
[24] Martin K, Erkoreka A, Flores I, Odriozola M, Sala JM. "Problems in the calculation of thermal bridges in dynamic conditions". Energy and Buildings,
43(2), 529-538, 2011.
[25] Akgün G, Dilmac S. "Comparison of mathematical models used in thermal bridge problems". İstanbul Technical UniversityJournal/d, 4(5), 3-16, 2005.
[26] Bakış A, Effects of Thermal Conductivity Changes to the Thermal Bridge Behavior in Concrete, Walls and Insulation Materials at Terrace Floors. Master's Thesis, Namık Kemal University, Tekirdag, Turkey, 2011.

Thank you for copying data from http://www.arastirmax.com