You are here

Sılar metodu ile hazırlanan Cu2O ince filmlerin fiziksel özellikleri

Physical properties of Cu2O thin films prepared by silar method

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2016.58672

Keywords (Original Language):

Abstract (2. Language): 
Polycrystalline Cu2O thin films were obtained on glass substrates using by silar method at 70 °C. XRD analysis showed the films are a cubic structure and lattice parameters were calculated. The surface morphology of the films were imaged by FE-SEM (Field Emission Scanning Electron Microscope). In order to determine the optical properties of the Cu2O thin films UV/vis spectrophotometer was used. Optical transmittance (T %) values of the Cu2O films were determined in the wavelength range 300-1100 nm at room temperature. Semiconductor Cu2O of the thin films optical transmittance values were found to be 50-70% in the visible region. Energy band gap values (Eg) of the films were found to be 2.53-2.62 eV.
Abstract (Original Language): 
Silar metodu kullanılarak 70 °C’de cam alttabanlar üzerine polikristal Cu2O ince filmleri elde edildi. XRD analizleri filmlerin kübik yapıda olduğunu gösterdi ve örgü parametreleri hesaplandı. Filmlerin yüzey morfolojisi alan emisyonlu taramalı elektron mikroskobu (FE-SEM) ile görüntülendi. Filmlerin optik özelliklerini belirlemek için UV/vis spektrofotometresi kullanılmıştır. Filmlerin oda sıcaklığındaki optik geçirgenlik (% T) değerleri 300-1100 nm dalga boyu aralığında belirlenmiştir. Yarıiletken Cu2O ince filmlerinin görünür bölgedeki optik geçirgenlik değerleri %50-70 olarak bulunmuştur. Filmlerin enerji bant aralığı değerleri (Eg) 2.53-2.62 eV bulundu.
854
857

REFERENCES

References: 

[1] Xu H, Dong J, Chen C. “One-step chemical bath deposition and photocatalytic activity of Cu2O”. Materials Chemistry and Physics, 143(2), 713-719, 2014.
[2] Ichimura M, Kato Y. “Fabrication of TiO2/Cu2O heterojunction solar cells by electro phoretic deposition and electrodeposition”. Materials Science in Semiconductor Processing, 16(6), 1538-1541, 2013.
[3] Chowdhury A, Bijalwan PK, Sahu RK. “Investigations on the role of alkali to obtain modulated defect concentrations for Cu2O thin films”. Applied Surface Science, 289, 430-436, 2014.
[4] Jongh PE, Vanmaekelbergh D, Kelly JJ. “A catalyst for the photochemical decomposition of water”. Chemmical Communications,12, 1069-1070, 1999.
[5] Zhang J, Liu J, Peng Q, Wang X, LY i. “Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors”. Chemistry of Materials, 18, 867-871, 2006.
[6] Zhu H, Wang J, Xu G. “Fast synthesis of Cu2O hollow microspheres and their application in DNA biosensor of hepatitis B virus”. Crystal Growth Design, 9, 633-638, 2009.
[7] Laskowski R, Blaha P, Schwarz K. “Charge distribution and chemical bonding in Cu2O”. Physical Review B, 67, 75-102, 2003.
[8] Balamurugan B, Mehta BR, Shivaprasad SM. “Surface-modified CuO layer in size-stabilized single-phase Cu2O nanoparticles”. Applied Physics Letters, 79, 3176, 2001.
[9] Oral AY, Mensur E, Aslan MH and Basaran E. “The preparation of copper (II) oxide thin films and the study of their microstructures and optical properties”. Materials Chemistry and Physics, 83, 140-144, 2004.
[10] Ottosson M, Carlsson JO. “Chemical vapour deposition of Cu20 and CuO from CuI and 02 or N20”. Surface and Coatings Technology, 78, 263-273, 1996.
[11] Gong YS, Lee C, Yang CK. “Atomic force microscopy and Raman spectroscopy studies on the oxidation of Cu thin films”. Journal of Applied Physics, 77, 5422-5425, 1995.
[12] Jang J, Chunga S, Kang H, Subramanian V. “P-type CuO and Cu2O transistors derived from a sol-gel copper (II)acetate monohydrate precursor“. Thin Solid Films 600, 157-161, 2016.
[13] Zainun AR, Tomoy S, Noor UM, Rusop M, Masaya I. “New approach for generating Cu2O/TiO2 composite films for solar cell applications”. Materials Letters, 66, 254-256, 2012.
[14] Ahirrao PB, Sankapal BR, Patil RS. “Nanocrystalline p-type cuprous oxide thin films by room temperature chemical bath deposition method”. Journal of Alloys and Compounds, 509, 5551-5554, 2011.
[15] Chatterjee S, Saha SK, Pal AJ. “Formation of all-oxide solar cells in atmospheric condition based on Cu2O thin-films grown through silar technique”. Solar Energy Materials & Solar Cells, 147, 17-26, 2016.
[16] Chowdhury A, Bijalwan PK, Sahu RK. “Investigations on the role of alkali to obtain modulated defect concentrations for Cu2O thin films”. Applied Surface Science, 289, 430-436, 2014.
[17] Ravichandran AT, Dhanabalan K, Vasuhi A, Chandramohan R, and Mantha S. “Morphology, bandgap, and grain size tailoring in Cu2O thin film by silar method”. IEEE Transactions on Nanotecnology, 14(1), 108-112, 2015.
[18] Gode F, Gumus C, Zor M. “Investigations on the physical properties of the polycrystalline ZnS thin films deposited by the chemical bath deposition method”. Journal of Crystal Growth, 299, 136–141, 2007.

Thank you for copying data from http://www.arastirmax.com