You are here

Mermer atıkları kullanarak sulu çözeltilerden Cu(II) giderimi

Removal of Cu(II) from aqueous solutions by using marble waste

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2016.75688

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this study, the effects of temperature, Cu(II) concentration, adsorbent dose, size and mixing speed were investigated on depending contact time in removal of Cu(II) ions from aqueous solutions with a adsorbent marble waste. When marble waste was used as an adsorbent removal efficiency of Cu(II) was determined to be 89.2% at 200 rpm stirring speed; optimum dosage of adsorbent was 10 g/L and sorption efficiency at this dose was determined to be 83.4%. The kinetic data fit the pseudo second order kinetic model. Activation energy for Cu(II) sorption process were found to be 9.35 kJ/mol. The adsorption equilibrium data for the Cu(II) sorption process obeyed well for Langmuir isotherm and the maximum sorption capacity were calculated to be 208.33 mg/g for 25 °C. Thermodynamic parameters indicated this the Cu(II) adsorption process were endothermic (H°=12.88 kJ/mol) and spontaneous (G°=-8.56 kJ/mol).
Abstract (Original Language): 
Bu çalışmada, Cu(II) iyonlarının bir adsorbent olan mermer atıkları ile sulu çözeltilerden giderimi üzerine, sıcaklık, Cu(II) konsantrasyonu, adsorbent dozu, boyutu ve karıştırma hızı gibi parametrelerin etkileri temas süresine bağlı olarak incelenmiştir. Adsorbent olarak kullanılan mermer atıkları üzerine bakırın sorpsiyonunda 200 devir/dk. karıştırma hızıyla giderim veriminin %89.2 olduğu, uygun adsorbent dozajının 10 g/l olup sorpsiyon veriminin bu dozajda %83.4 değerine ulaştığı belirlenmiştir. Kinetik verilerin II. dereceden kinetik modele daha iyi uyduğu belirlenmiştir. Aktivasyon enerjisinin Cu(II) sorpsiyon prosesi için 9.35 kJ/mol olduğu bulunmuştur. Denge verilerinin Langmuir izotermine uyduğu ve Cu(II) sorpsiyon prosesi için maksimum sorpsiyon kapasitesinin 25 °C’de yaklaşık 208.33 mg/g olduğu hesaplanmıştır. Termodinamik parametreler Cu(II) adsorpsiyonuprosesinin endotermik olduğunu (H°=12.88 kJ/mol) ve kendiliğinden gerçekleşen (G°=-8.56 kJ/mol) karakterde olduğunu göstermiştir.
877
886

REFERENCES

References: 

[1] Moore JW, Ramamoorthy S. Heavy Metals in Natural Waters. New York, USA, Springer Verlag, 1984.
[2] Forstner U, Wittmann, GTW. Metal Pollution in the Aquatic Environment. 2nd ed. Berlin, Germany, Springer Verlag, 1983.
[3] Eckenfelder WW. Industrial Water Pollution Control. 2nd ed. New York, USA, McGraw-Hill, 1989.
[4] Ong SA, Toorisaka E, Hirata M, Hano T. "Comparative study on kinetic adsorption of Cu (II), Cd (II) and Ni (II) ions from aqueous solutions using activated sludge and dried sludge". Applied Water Science. 3(1), 321-325, 2013.
[5] Husseın H, Farag S, Kandil K, Moawad H. “Tolerance and Uptake of Heavy Metals by Pseudomonas”. Process Biochemistry, 40, 955-961, 2004.
[6] Lovell A, Nancy M, ShaKayla N, Kayla M. "Biosorption and chemical precipitation of lead using biomaterials, molecular sieves, and chlorides, carbonates, and sulfates of Na & Ca". Journal of Environmental Protection. 82, 751-762, 2013.
[7] Soetaredjo FE, Kurniawan A, Ki OL, Ismadji S. "Incorporation of selectivity factor in modeling binary component adsorption isotherms for heavy metals-biomass system". Chemical Engineering Journal. 219, 137-48, 2013.
[8] Al-Asheh S, and Banat F. “Adsorption of Zinc and Copper Ions by the Solid Waste of the Olive Oil Industry”.Adsorption Science Technolgy, 19(2), 117-129, 2001.
[9] Weng CH, Chiang PC, and Chang EE. “Adsorption Characteristics of CuII on to Industrial Wastewater Sludges”. Adsorption Science Technolgy, 19(2), 143-150, 2001.
[10] Ho YS, McKay G. “Kinetic model for lead(II) sorption on to Peat”. Adsorption Science Technology, 16, 243-255, 1998. [11] Ghazy SE, Samra SE, El-Morsy SM. sorptive–flotation of copper (ıı) from water using different types of powdered activated carbons as sorbents and oleic acid as surfactant”. Adsorption Science Technology, 19, 721-736, 2001.
[12] Şentürk A, Gündüz L, Tosun Yİ, Sarıışık A. “Mermer teknolojisi”. SDÜ, Mühendislik-Mimarlık Fakültesi Maden Mühendisliği Bölümü, S. 242, Isparta, 1996.
[13] Zorluer İ, Usta M. “Zeminlerin Atık Mermer Tozu İle İyileştirilmesi”. Türkiye IV. Mermer Sempozyumu Afyon, S. 305-312, 18-19 Aralık, 2003.
[14] Köse HM, Diker M. “Maden ve Madenciliğe Dayalı Sanayilerin Türkiye Ekonomisine Katkısı”. 3. Endüstriyel Hammaddeler Sempozyumu Bildiriler Kitabı, 14-15 Ekim, 1999.
[15] Görhan G, Kahraman E, Demir İ, Başpınar MS. “Mermer Tozu ve Atıklarının Kullanım Alanlarının Araştırılması”, Türkiye VI. Mermer ve Doğaltaş Sempozyumu, Afyon, 26-27 Haziran, 2008.
[16] Lagergren S. “Zur theorie der sogenannten adsorption geloster stoffe”. Kungliga Svenska Vetens kapsak ademiens, 24(5), 1–39, 1898.
[17] McKay G, Ho YS. “Pseudo-second order model for sorption processes”. Process Biochemistry, 34, 451-65, 1999.
[18] Weber WJ, Morris JC. “Kinetics of adsorption on carbon from solution”. Journal of the Sanitary Engineering Division, 89(2), 31–60, 1963.
[19] Freundlich H. “Ueber die adsorption in loesungen”. Zeitschrift für Physikalische Chemie, 57, 385-470, 1907.
[20] Langmuir I. “The adsorption of gases on plane surfaces of glass, mica and platinum”. Journal of the American Chemical Society, 40, 1361-1403, 1918.
[21] Dubinin MM, Radushkevich LV. “Equation of the characteristic curve of activated charcoal”. Proceedings of the USSR Academy of Sciences, 55 (1), 331–333, 1947.
[22] Ho YS, Wang CC. “Pseudo-isotherms for the sorption of cadmium ion onto tree fern”. Process Biochemistry, 39, 761-765, 2004.
[23] Unnithan MR, Anirudhan TS. “The kinetics and thermodynamics of sorption of chromium (VI) onto the iron (III) complex of a carboxylated polyacrylamide-grafted sawdust”. Industrial & Engineering Chemistry Research, 40, 2683-2701, 2001.
[24] Wang K, Tao X, Xu J, Yin N. “Novel Chitosan-MOF Composite Adsorbent for the Removal of Heavy Metal Ions”. Chemistry Letters, 45(12), 1365-1368, 2016.
Pamukkale Univ Muh Bilim Derg, 23(7), 877-886, 2017
H. Arslanoğlu
886
[25] El-Ashtoukhya SZ, Amina NK, Abdelwahabb O. “Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent”. Desalination, 223, 162-173, 2008.
[26] Qian Q, Mochidzuki K, Fujii T, Sakoda A. “Removal of copper from aqueous solution using iron containing adsorbents derived from methane fermentation sludge” Journal of Hazardous Materials, 172, 1137–1144, 2009.
[27] Namasivayam C, Kadirvelu K. “Agricultural solid wastes for the removal of heavy metals: adsorption of Cu(II) by coirpith carbon”. Chemosphere,34, 377-99, 1997.
[28] Periasamy K, Namasivayam C. “Removal of copper(II) by adsorption onto peanut hull carbon from water and copper plating industry wastewater”. Chemosphere, 32, 769-789, 1996.
[29] Tanyıldızı MS, Özer A, Tumen F. “The adsorption of Cu(II) ions from aqueous solutions by activated carbon" from sugar beet pulp”. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 11, 145-154, 1999.
[30] Reddad Z, Gerente C, Andres Y, Cloirec PL. “Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies”. Environmental Science Technology, 36, 2067-2073, 2002.
[31] Zheng JC, Feng HM, Lam MHW. “Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material”. Journal of Hazardous Materials, 171, 780-785, 2009.
[32] Dahiya S, Tripathi RM, Hegde AG. “Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass”. Journal of Hazardous Materials, 150, 376-386, 2008.
[33] Nuhoglu Y. Oguz E. “Removal of copper(II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis”. Process Biochemistry, 38, 1627-1631, 2003.
[34] Khormaei M. Nasernejad B. Edrisi, M. “Copper biosorption from aqueous solutions by sour orange residue”. Journal of Hazardous Materials, 149, 269-274, 2007.
[35] Ucun H, Aksakal O, Yildiz E. “Copper(II) and zinc(II) biosorption on Pinus sylvestris L.”. Journal of Hazardous Materials, 161(7), 1040-1045, 2009.
[36] Rafatullah M, Sulaiman O, Hashim R, Ahmad A. “Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust”. Journal of Hazardous Materials, 170(5), 969-977, 2009.
[37] Zhai QLiJ, Zhang W, Wang M, Zhou J. “Kinetic studies of adsorption of Pb(II), Cr(III) and Cu(II) from aqueous solution by sawdust and modified peanut husk”. Journal of Hazardous Materials, 141(8), 163-167, 2007.
[38] Guechi EK, Hamdaoui O. “Evaluation of potato peel as a novel adsorbent for the removal of Cu(II) from aqueous solutions: equilibrium, kinetic, and thermodynamic studies”. Desalination and Water Treatment, 57(3), 10677-10688, 2016.
[39] Ay SC, Uyanik A, Ozasik A. “Single and binary component adsorption of Cu(II) and cadmium (II) from aqueous solutions using tea-industry waste”. Seperation Purification and Technolgy, 38(6), 273-280, 2004.
[40] Lee SH, Yang, JW. “Removal of copper in aqueous solution by apple wastes”. Separation and Science Technology, 32(3), 1371-1387, 1997.
[41] Ho, YS. “Removal of copper ions from aqueous solution by tree fern”. Water Resource, 37(8), 2323-2330, 2003.
[42] Phiri SM, Kijjanapanich P, Rene ER. Esposito G, Lens PNL. “Copper, lead and zinc removal from metal-contaminated wastewater by adsorption onto agricultural wastes Suthee Janyasuthi wong”. Environmental Technology, 36(9), 3071-3083, 2015.

Thank you for copying data from http://www.arastirmax.com