You are here

Lazer destekli imalatta plazma dinamiklerinin teorik ve deneysel olarak araştırılması

Theoretical and experimental investigation of plasma dynamics for laser- induced machining mechanism

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2017.94758
Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
The quality of laser micro-machining process (micro welding, drilling, surface structuring etc..) has vital importance for electronic, aviation-aerospace and biomedical industries. Dynamics of laser-induced plasma are determined with some parameters such as laser intensity, beam waist diameter and ambient gas conditions. When the plasma density is limited with a threshold value, the laser energy can not transmitted to the material due to the rarefied plasma. This decoupling threshold has a crucial role for micro-machining operation. In the scope of this paper, the behaviour of the plasma dynamics has been examined both theoretically and experimentally for titanium material and optimal laser intensity threshold was reported to prevent dissipation of beneficial process energy and to compare numerical investigations.
Abstract (Original Language): 
Lazer destekli mikro-imalat [mikro kaynak, delme, yüzey yapılandırma vb...) prosesinin kalitesi elektronik, havacılık- uzay ve biyomedikal endüstrileri için özel bir öneme sahiptir. Lazerin oluşturduğu plazmanın dinamikleri lazer güç yoğunluğu, ışın odak çapı ve çevre koşulları tarafından belirlenmektedir. Plazma yoğunluğunda eşik değerine ulaşıldığında plazma korumasına bağlı ışınım kayıpları sebebiyle, lazer enerjisi malzemeye aktarılamamaktadır. Bu ayrışma eşiği mikro-imalat operasyonu için kritik bir role sahiptir. Bu makale kapsamında, titanyum malzeme için plazma dinamikleri teorik ve deneysel olarak incelenmiş ve faydalı prosess enerjisinin kaybını önlemek için optimum lazer yoğunluk eşiği rapor edilmiş ve numerik çalışmalarla karşılaştırılmıştır.
1009
1013

REFERENCES

References: 

[1] Mahalik NP. Micromanufacturing and Nanotechnology.
Berlin-Heidelberg, Germany, Springer Verlag, 2006. [2] Feynman RP. "There is plenty of room at the bottom".
Engineering and Science, 23(5), 22-36, 1960.
http://calteches.library.caltech.edu/1976/1/1960Botto m.pdf (31.10.2016)
[3] American Society of Precision Engineering.
www.aspe.net (31.10.2016) [4] Poprawe R. Lasertechnik für die Fertigung, Grundlagen
Perspektiven und Beispiele für den innovation Ingenieur.
Berlin-Heidelberg, Germany, Springer Verlag, 2005. [5] Lunney JG, Jordan R. "Pulsed laser ablation of metals".
Applied Surface Science, 127-129, 941-946, 1998. [6] Trtica MS, Radak BB, Gakovic BM, Milanovic DS, Batani D,
Desai T. "Surface modifications of Ti6Al4V by a
picosecond Nd:YAG laser". Laser and Particle Beams,
Cambridge University Press, 27, 85-90, 2009. [7] Dahotre NB, Harimkar SP. Laser Fabrication and
Machining of Materials. New York, USA, Springer Verlag,
2008.
Pamukkale Univ Muh Bilim Derg, 23(8), 1009-1013,2017
[16. Uluslararası Malzeme Sempozyumu Özel Sayısı]
S.Çelen
1012
[8] Chaudhuri A, Hadjadj A, Guha C, Dutta TK. Numerical [26] Chan CL, Mazumder JE. "One-dimensional steady-state
Simulations of Microscale Gas Flows: Continuum Approach. model for damage by vaporization and liquid expulsion
Editor: Strangio MA. Recent Advances in Technologies, due to laser-material ablation". Journal of Applied Physics,
121-146, InTech, 2009. Available 62(11), 4579-4586, 1987.
http://www.intechopen.com/books/recent-advances-in- [27] Kelly R, Dreyfus RW. "Reconsidering the mechanisms of
technologies/numerical-simulations-of-microscale-gas- laser sputtering with Knudsen-layer formation taken into
flows-continuum-approach account". Nuclear Instruments and Methods in Physics
[9] Kannatey-Asibu E. Principles of Laser Material Processing. Research Section B: Beam Interactions with Materials and
Hoboken, New Jersey, USA; John Wiley & Sons, Inc., 2009. Atoms, 32(1-4), 341-348, 1988.
[10] Hirschfelder JO, Curtiss CF, Bird RB. Molecular Theory of [28] Kelly R, Dreyfus RW. "On the effect of Knudsen-layer
Gases and Liquids. New York, USA, Wiley, 1954. formation on studies of vaporization, sputtering and
[11] Kelly R. "On the dual role of the Knudsen layer and desorption". Surface Science, 198(1-2), 263-276, 1988.
unsteady, adiabatic expansion in pulse sputtering [29] Singh RK, Narayan J. "Pulsed-laser evaporation technique
phenomena". Journal of Chemical Physics, 92(8), for deposition of thin films: Physics and theoretical
5047-5056, 1990. model". The American Physical Society Physical Review B,
[12] Çelen S, Ozden H. "Laser-induced novel patterns: As 41(13), 8843-8859, 1990.
smart strain actuators for new-age dental implant [30] Aden M, Beyer E, Herziger G. "Laser-induced vaporization
surfaces". Elsevier Applied Surface Science, 263, 579-585, of metal as a Riemann problem". Journal of Physics D:
2012. Applied Physics, 23(6), 655-661, 1990.
[13] Çelen S. "Pulsed laser-induced lotus leafs from the [31] Aden M, Beyer E, Herziger G, Kunze H. "Laser-induced
viewpoint of coalescence of sensors hypothesis". vaporization of a metal surface". Journal of Physics D:
18th International Conference on Surface Modification of Applied Physics, 25(1), 57-65, 1992.
Materials by Ion Beams, Kuşadası, Turkey, [32] Chen KR, Leboeuf JN, Wood RF, Geohegan DB, Donato JM,
15-20 September 2013. Liu CL, Puretzky AA. "Accelerated expansion of laser-
[14] Çelen S. "A novel strain energy density algorithm for laser ablated materials near a solid surface". The American
induced micro-hollows". Elsevier Optics and Lasers in Physical Society Physical Review Letters, 75(25), 4706-
Engineering, 70, 45-50, 2015. 4709, 1995.
[15] Çelen S. "CPE: Novel method to shorten the lead time for [33] Capewell DL, Goodwin DG. "Monte Carlo simulations of
laser micro-machining". Materials Testing, Carl Hanser reactive pulsed laser deposition". Proceedings of SPIE
Verlag GmbH & Co. KG, Berlin, 57(6), 585-588, 2015. 2403 Laser-Induced Thin Film Processing, 49-59, 1995.
[16] Çelen S. "On mechanism of explosive boiling in [34] Peto G, Karacs A, Pastzi Z, Guczi L, Divinji T, Joob A.
nanosecond regime". Applied Physics B:Lasers and Optics, "Surface treatment of screw shaped titanium dental
Springer-Verlag Berlin Heidelberg, 6, 122-168, 2016. implants by high intensity laser pulses". Applied Surface
[17] Afanas'ev YV, Krokhin ON. "Vaporization of matter Science, Proceeedings of the European Materials Research
exposed to laser emission". Soviet Physics Journal of Society 2001-Symposium L "Photon-Induced Surface
Experimental and Theoretical Physics, 25(4), 639-645, Processing", 186(1-4), 7-13, 2002.
1967. [35] Voisey KT, Kudesia SS, Rodden WSO ,Hand DP, Jones JDC,
[18] Anisimov SI. "Vaporization of metal absorbing laser Clyne TW. "Melt ejection during laser drilling of metals".
radiation". Soviet Physics Journal of Experimental and Material Science and Engineering A , 356(1-2), 414-424,
Theoretical Physics, 27(1), 182-183, 1968. 2003.
[19] Anisimov SI, Khokhlov VA. Instabilities in Laser-Matter [36] Atrique D, Alexiades V, Khanal H. "Hydrodynamic
Interaction. Boca Raton-FL, USA, CRC Press, 1995. modelling of ns-laser ablation". Ninth MSU-UAB
[20] Olstad RA, Olander DR. "Evaporation of solids by laser Conference on Differential Equations and Computational
pulses. I. Iron". Journal of Applied Physics, 46(4), Simulations, Electronic Journal of Differential Equations,
1499-1508, 1975. Conference, 20, 1-14, 2013.
[21] Olstad RA, Olander DR. "Evaporation of solids by laser https://www.math.utk.edu/~vasili/va/descr/laser/79.D
pulses. II. Zirconium hydride". Journal of Applied Physics, A-VA-HK.EJDE_2013-prepnt.pdf
46(4), 1509-1518, 1975. [37] Phipps CR Jr., Dreyfus RW. The High Laser Irradiance
[22] Andrews JG, Attey DR. "On the motion of an intensely Regime. Editors: Vertes A, Gijbels R, Adams F. Laser
heated evaporating boundary". Institute of Mathematics Ionization Mass Analysis, 369-431, New York, USA, John
and its Applications (IMA) Journal of Applied Mathematics, Wiley and Sons, 1993.
15(1), 59-72, 1975. [38] Root RG. Modeling of post-breakdown phenomena.
[23] Andrews JG, Attey DR. "Hydrodynamic limit to Editors: Radziemski LJ, Cremers DA. Laser-Induced
penetration of a material by a high-power beam". Journal Plasmas and Applications, 69-103, New York, USA,
of Physics D: Applied Physics, 9(15), 2181-2194, 1976. Marcel Dekker Inc., 1989.
[24] Allmen M. "Laser drilling velocity in metals". Journal of [39] Bergel'son VI, Loseva TV, Nemchinov IV, Orlova TI.
Applied Physics, 47, 5460-5463, 1976. "Propagation of plane supersonic radiation waves". Soviet
[25] Knight CJ. "Theoretical modeling of rapid surface Journal of Plasma Physics, 1(6), 498, 1975.
vaporization with back pressure". American Institute of
Aeronautics and Astronautics Journal, 17(5), 519-523,
1979.
Pamukkale Univ Muh Bilim Derg, 23(8), 1009-1013,2017
[16. Uluslararası Malzeme Sempozyumu Özel Sayısı]
S.Çelen
7 Nomenclature
Physical Properties
Symbol
Value
Unit
Mass Density
P
4.54
kg/m3
Vaporization
Lv
8.893*10A6
J/kg
Enthalpy
Atomic Mass
m
0.47*10A-26
kg
Molar Mass
M
47.867
g/mol
Laser
I
1420-1428
MW/cm2
Intensity
Vaporization
T
3562
K
Temperature
Boltzmann
Bt
1.3865*10A-
J/K
Constant
23
Specific Heat
CP
0.54
kJ/kg.K
1013
3
[40] McKay JA, Weiting TJ, French FW. "Pressure and Impulse Generation by Laser-Driven Air Plasmas at High Intensity and Short Pulse Duration". American Institute of Aeronautics and Astronautics (AIAA) Paper, 17th Fluid Dynamics, Plasma Dynamics, and Laser Conference, Snowmass, Colo.,USA, 84-1586, 25-27 June 1984.
[41] Ding K, Ye L. Laser shock peening performance and process simulation. Woodhead Publishing and Maney Publishing, CRC Press, 2006.

Thank you for copying data from http://www.arastirmax.com