You are here

RTM ile üretilen iki-yönlü cam-dokuma takviyeli kompozit levhalarda cam-keçe kullanımının mekanik anizotropi üzerine etkisi

Effects of glass-mat on mechanical anisotropy in bidirectional e-glass woven roving reinforced composite sheets produced by RTM method

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2017.55631
Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this study, it was investigated that the effects of glass-mat on mechanical anisotropy in bidirectional e-glass woven roving reinforced composite sheets produced by RTM method. Resin Transfer Molding (RTM) process with a computer-controlled laboratory-scale was established for this purpose. In addition, the RTM mold was designed as fully closed, a temperature-controlled and the vacuum-assisted. Two sides smooth plates were manufactured utilizing polished stainless steel plates on the top and bottom surfaces of the RTM mold. The resin suitable to RTM is unsaturated polyester called Polipol-336. To obtain composite sheets, the glass-mats with areal weights of 450 and 225 g/m² were placed between the glass-woven rovings with areal weights of 800-500-300-200 g/m². At the end of the RTM process, it was obtained composite sheets which have different combinations of fabrics with 6-15 plies and approximately 3mm sheet thickness at a fiber volume fraction of 38,1% - 48,0%. Then, basic mechanical properties such as tensile and flexural strength of the composite sheets was tested. As a result of tests, the glass-mats placed between the glass-woven rovings provided a very positive effect on the mechanical anisotropy. Particularly, this positive effect is very important in the industries such as storage tanks, marines and the building constructions used large-scale laminated composite sheets. Also an assessment made on the cost and it was made recommendations for optimal cost of composite laminates.
Abstract (Original Language): 
Bu çalışmada, Reçine Transfer Kalıplama (RTM) ile imal edilen iki-yönlü cam-dokuma takviyeli kompozit levhalarda cam-keçe kullanımının mekanik anizotropi üzerine etkisi araştırılmıştır. Bu amaçla, bilgisayar kontrollü laboratuvar ölçekli Reçine Transfer Kalıplama (RTM) prosesi kurulmuştur. Ayrıca, tam kapalı, vakum destekli ve ısı kontrollü olarak tasarlanan RTM kalıbının alt ve üst yüzeylerinde parlatılmış paslanmaz çelik saclar kullanılarak iki yüzü düzgün kompozit levhalar üretilmiştir. Çalışmada RTM’ye uygun Polipol-336 polyester reçinesi kullanılmıştır. Kompozit levha imalatı için 800-500-300-200 g/m² 'lik iki-yönlü cam-dokumalar arasına 450-225 g/m² 'lik cam-keçeler yerleştirilmiştir. RTM prosesi sonunda kalıptan %38,1 - %48,0 fiber hacimli, 6-15 tabakalık farklı kombinasyonlarda ve yaklaşık 3 mm kalınlığında kompozit levhalar elde edilmiştir. Bu kompozit levhaların çekme ve eğilme mukavemeti gibi temel mekanik özellikleri test edilmiştir. Deneyler sonucunda, özellikle depolama tankları, deniz araçları ve yapı endüstrisi gibi sektörlerde kullanılan büyük ölçekli tabakalı kompozit levhalarda cam-dokumalar arasına cam-keçe takviyesinin mekanik anizotropi üzerinde olumlu etkisi olduğu tespit edilmiştir. Ayrıca maliyet açısından da değerlendirme yapılmış ve optimum kompozit levha maliyeti için önerilerde bulunulmuştur.
967
973

REFERENCES

References: 

[1] Whang B. “Comparison Study of Aluminum, Ferro-Cement, and Fiber-Reinforced Plastic for Small Craft in Korea”. Naval Ship Research and Development Center, Bethesda, Maryland, Structures Department Research and Development Report, 1972.
[2] Scott RJ, Sommella JH. “Feasibility Study of Glass Reinforced Plastic Cargo Ship”. Department of the Navy Naval Ship Engineering Center, Washington DC, Final Technical Report on Reinforced Plastic Ships, Project SR, 195, 1971.
[3] Akkaoui W, Bayram G. “Effects of Processing Parameters on Mechanical and Thermal Properties of Glass Mat Reinforced Nylon 6 Composites”. Journal of Reinforced Plastics and Composites, 23(8), 881-892, 2004.
[4] Miracle DB, Donaldson SL. Composites. Vol. 21, ASM International Handbook, 2001.
[5] Alfers JB, Graner WR. "Reinforced Plastics-A Structural Material for Marine Applications". SNAME Transactions, the Society of Naval Architects and Marine Engineers, 62, 5-29, 1954.
[6] Almeida JHS, Angrizani CC, Botelho EC, Amico SC. “Effect of fiber orientation on the shear behavior of glass fiber/epoxy composites”. Materials & Design, 65, 789-795, 2015.
[7] Kim JW, Kim HS, Lee DG. “Tensile Strength of Glass Fiber-Reinforced Plastic by Fiber Orientation and Fiber Content Variations”. International Journal of Modern Physics: Conference Series, 6, 640-645, 2012.
[8] Kim JW, Lee DG. “Study on the fiber orientation during compression molding of reinforced thermoplastic composites”. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(4), 335-339, 2014.
[9] Onga LK, Kiena QK, Jyeb WK. “Effect of fibre orientation on the scratch characteristics of e-glass fibre-reinforced polyester composite”. Recent Patents on Materials Science, 4(1), 56-62, 2011.
[10] Mortazavian S, Fatemi A. “Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites”. Composites Part B: Engineering, 72, 116-129, 2015.
[11] Bura V, Dvr P. “Testing the flexural fatigue behavior of e-glass epoxy laminates”. International Journal of Research in Engineering and Technology, 3(8), 224-241, 2014.
[12] Cecen V, Sarikanat M, Seki Y, Govsa T, Yildiz H, Tavman IH. “Polyester composites reinforced with noncrimp stitched carbon fabrics: Mechanical characterization of composites and investigation on the interaction between polyester and carbon fiber”. Journal of Applied Polymer Science, 102(5), 4554-4564, 2006.
Pamukkale Univ Muh Bilim Derg, 23(8), 967-973, 2017
(16. Uluslararası Malzeme Sempozyumu Özel Sayısı)
R. Sakin
973
[13] Sandeep MB, Choudhary D, Nizamuddin I, Qalequr R. “Experimental study of effect of fiber orientation on the flexural strength of glass/epoxy composite material”. International Journal of Research in Engineering and Technology, 3(9), 208-2011, 2014.
[14] Siddhartha, Gupta K. “Mechanical and abrasive wear characterization of bidirectional and chopped E-glass fiber reinforced composite materials”. Materials and Design, 35, 467–479, 2012.
[15] Banakar P, Shivananda HK, Niranjan HB. “Influence of Fiber Orientation and Thickness on Tensile Properties of Laminated Polymer Composites”. International Journal of Pure and Applied Sciences and Technology, 9(1), 61-68, 2012.
[16] Kumar KV, Reddy PR, Shankar DVR. “Effect of Angle Ply Orientation on Tensile Properties of Bi Directional Woven Fabric Glass Epoxy Composite Laminate”. International Journal of Computational Engineering Research, 3(10), 55-61, 2013.
[17] Heckadka SS, Nayak SY, Narang K, Pant KV. “Chopped Strand/Plain Weave E-Glass as Reinforcement in Vacuum Bagged Epoxy Composites”. Journal of Materials, 2015(957043), 1-7, 2015.
[18] Sakin R, Ay I, Yaman R. “An investigation of bending fatigue behavior for glass-fiber reinforced polyester composite materials”. Materials & Design, 29(1), 212-217, 2008.
[19] Sakin R, Ay I. “Statistical analysis of bending fatigue life data using Weibull distribution in glass-fiber reinforced polyester composites”. Materials & Design, 29(6), 1170-1181, 2008.
[20] Ary Subagia IDG, Kim Y, Tijing LD, Kim CS, Shon HK. “Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibers”. Composites Part B: Engineering, 58, 251-258, 2014.
[21] Arifin AMT, Abdullah S, Rafiquzzaman Md, Zulkifli R, Wahab DA, Arifin AK. “Investigation of the behaviour of a chopped strand mat/woven roving/foam-Klegecell composite lamination structure during Charpy testing”. Materials & Design, 59, 475-485, 2014.
[22] Chang CY, Lin HJ. “Unsaturated polyester/E-glass fiber composites made by vacuum assisted compression resin transfer molding”. Journal of Polymer Engineering, 32(8-9), 539-547, 2012.
[23] Khoun L, Maillard D, Bureau MN. “Effect of process variables on the performance of glass fibre reinforced composites made by high pressure resin transfer moulding”. 12th Annual Automotive Composites Conference, Troy, MI, USA, 11-13 September 2012.
[24] Han SH, Cho EJ, Lee HC, Jeong K, Kim SS. “Study on high-speed RTM to reduce the impregnation time of carbon/epoxy composites”. Composite Structures, 119, 50-58, 2015.
[25] Brocks T, Shiino MY, Cioffi MOH, Voorwald HJC, Caporalli Filho A. “Experimental RTM manufacturing analysis of carbon/epoxy composites for aerospace application”. Materials Research, 16(5), 1175-1182, 2013.
[26] Ou Y, Zhu D. “Tensile behavior of glass fiber reinforced composite at different strain rates and temperatures”. Construction and Building Materials, 96, 648-656, 2015.
[27] Chen D, Arakawa K, Xu C. “Reduction of void content of vacuum-assisted resin transfer molded composites by infusion pressure control”. Polymer Composites, 36(9), 1629–1637, 2015
[28] Cox BN, Flanagan G. “Handbook of Analytical Methods for Textile Composites”. NASA Contractor Report 4750, Langley Research Center, Hampton, Virginia, USA, 1997.
[29] TS EN ISO 527-4. “Standard Test Method of Plastics–Determination of tensile properties –Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites”, 2007.
[30] ASTM-D7264/D7264M. “Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials”, 2007.
[31] Alam S, Habib F, Irfan M, Iqbal W, Khalid K. “Effect of orientation of glass fiber on mechanical properties of GRP composites”. Journal of the Chemical Society of Pakistan, 32(3), 265-269, 2010.

Thank you for copying data from http://www.arastirmax.com