You are here

Rijit poliüretan köpük malzemelere kabaran alev geciktirici ilavesinin yanma direnci ve zararlı emisyon oluşumuna etkilerinin incelenmesi

Investigation into the effects of intumescent flame retardant addition on flame resistance and harmful emissions of rigid polyurethane foams

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2017.77785

Keywords (Original Language):

Abstract (2. Language): 
In this study, an intumescent flame retardant composed of ammonium polyphosphate/pentaerythritol (2/1) was incorporated in rigid polyurethane foams in 5, 10 and 15 wt. %. Effects of the intumescent flame retardant additions on the flame resistance and harmful emissions of the foams were investigated by using cone calorimeter tests. It was determined that the flame resistance of the foam was significantly increased with the addition of the intumescent flame retardant. Furthermore, smoke, carbon monoxide and nitrogen monoxide emissions causing suffocation and poisoning were decreased in different ratios with the addition of the intumescent flame retardant. The addition of 15 wt. % the intumescent flame retardant into rigid polyurethane foam resulted in approximately 40 % decrease in the total heat released value and reduced the nitrogen monoxide emission to less than 9 ppm. In this content, it was concluded that the intumescent flame retardant synthesized in this study can be preferred as an effective flame retardant material for rigid polyurethane foams due to ensuring better enhancement of flame resistance and harmful emissions.
Abstract (Original Language): 
Bu çalışmada, amonyum polifosfat/pentaeritritolden (2/1) oluşan kabaran alev geciktiricinin %5, 10 ve 15 oranlarında rijit poliüretan köpük malzemelere ilave edilmesinin yanma direnci ve zararlı emisyon oluşumuna etkileri konik kalorimetre testleri ile incelemeye alınmıştır. Köpük malzeme içerisinde kabaran alev geciktirici miktarının artmasına bağlı olarak yanma direncinde artış tespit edilmiştir. Ayrıca, yine alev geciktirici miktarı artışına bağlı olarak malzemenin yanma sırasında oluşturduğu ve insanların boğulması ve zehirlenmesine sebep olan is, karbon monoksit ve azot monoksit emisyonlarının da farklı oranlarda azaldığı belirlenmiştir. Rijit poliüretan köpüğe %15 oranında kabaran alev geciktirici ilavesinin, toplam ısı yayılım miktarının yaklaşık olarak %40 oranında azalmasına ve maksimum azot monoksit emisyonu da 9 ppm’in altına düşmesine sebep olmuştur. Bu kapsamda, bu çalışmada sentezlenen kabaran alev geciktiricinin, rijit poliüretan köpük malzemeler için yanma direncinin ve zararlı emisyonların iyileştirilmesini sağlamasından dolayı etkili bir alev geciktirici olarak tercih edilebileceği sonucuna varılmıştır.
984
989

REFERENCES

References: 

[1] Chang LC, Xue Y, Hsieh FH. "Comparative study of physical
properties of water-blown rigid polyurethane foams
extended with commercial soy flours". Journal of Applied
Polymer Science, 80(1), 10-19, 2001.
[2] Tu YC, Kiatsimku P, Suppes G, Hsieh FH. "Physical
properties of water-blown rigid polyurethane foams from
vegetable oil-based polyols". Journal of Applied Polymer
Science, 105(2), 453-459, 2007.
0
2
4
6
8
10
12
14
0 100 200 300 400 500 600
Zaman (s)
İs (1/m)
PUR
PUR+10KAG
PUR+05KAG
PUR+15KAG
0
50
100
150
200
250
300
350
400
450
0 100 200 300 400 500 600
Zaman (s)
CO (ppm)
PUR
PUR+10KAG
PUR+05KAG
PUR+15KAG
0
2
4
6
8
10
12
14
16
18
20
0 100 200 300 400 500 600
Zaman (s)
NO (ppm)
PUR
PUR+10KAG
PUR+05KAG
PUR+15KAG
Pamukkale Univ Muh Bilim Derg, 23(8), 984-989, 2017
(16. Uluslararası Malzeme Sempozyumu Özel Sayısı)
B. Aydoğan, N. Usta
988
[3] Basso MC, Giovando S, Pizzi A, Pasch H, Pretorius N, Delmotte L, Celzard A. "Flexible-elastic copolymerized polyurethane- tannin foams". Journal of Applied Polymer Science, 131(13), 6, 2014.
[4] Zheng XR, Wang GJ, Xu W. "Roles of organically-modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam". Polymer Degradation and Stability, 101, 32-39, 2014.
[5] Pawar MS, Kadam AS, Singh PC, Kusumkar VV, Yemul OS. "Rigid polyurethane foams from cottonseed oil using bio-based chain extenders: a renewable approach". Iranian Polymer Journal, 25(1), 59-68, 2016.
[6] Usta N. "Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter". Journal of Applied Polymer Science, 124(4), 3372-3382, 2012.
[7] Wu DH, Zhao PH, Liu YQ, Wang XF. "Halogen free flame retardant rigid polyurethane foam with a novel phosphorus-nitrogen intumescent flame retardant". Journal of Applied Polymer Science, 131(11), 1-7, 2014.
[8] Van der Veen I, de Boer J. "Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis". Chemosphere, 88(10), 1119-1153, 2012.
[9] Alaee M, Arias P, Sjodin A, Bergman A. "An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release". Environment International, 29(6), 683-689, 2003.
[10] Liu JC, Yu ZL, Chang HB., Zhang YB, Shi YZ,Luo J, Pan BL, Lu C. "Thermal degradation behavior and fire performance of halogen-free flame-retardant high impact polystyrene containing magnesium hydroxide and microencapsulated red phosphorus". Polymer Degradation and Stability, 103, 83-95, 2014.
[11] Levchik SV, Weil ED. "Flame retardancy of thermoplastic polyesters-a review of the recent literature". Polymer International, 54(1), 11-35, 2005
[12] Zhang S, Horrocks AR. "A review of flame retardant polypropylene fibres", Progress in Polymer Science, 28(11), 1517-1538, 2003.
[13] Checchin M, Checchini C, Cellarosi B, Sam FO. "Use of cone calorimeter for evaluating fire performances of polyurethane foams". Polymer Degradation and Stability, 64(3), 573-576, 1999.
[14] Wu XF, Wang LC, Wu C, Yu JH, Xie LY, Wang GL, Jiang PK. "Influence of char residues on flammability of EVA/EG, EVA/NG and EVA/GO composites". Polymer Degradation and Stability, 97(1), 54-63, 2012.
[15] Lewin M. "Unsolved problems and unanswered questions in flame retardance of polymers". Polymer Degradation and Stability, 88(1), 13-19, 2005.
[16] Li B, Jia H, Guan LM, Bing BC, Dai JF. "A novel intumescent flame-retardant system for flame-retarded LLDPE/EVA composites". Journal of Applied Polymer Science, 114(6), 3626-3635, 2009.
[17] Zanetti M, Camino G. Thomann R, Mullhaupt R. "Synthesis and thermal behaviour of layered silicate-EVA nanocomposites". Polymer, 42(10), 4501-4507, 2001.
[18] Chen XL, Jiao CM. "Synergistic effects of hydroxy silicone oil on intumescent flame retardant polypropylene system". Fire Safety Journal, 44(8), 1010-1014, 2009.
[19] Carosio F, Alongi J, Malucelli G. "Layer by Layer ammonium polyphosphate-based coatings for flame retardancy of polyester-cotton blends". Carbohydrate Polymers, 88(4), 1460-1469, 2012.
[20] Chen M, Tang MQ, Qi F, Chen XL, He WD. "Microencapsulated ammonium polyphosphate and its application in the flame retardant polypropylene composites". Journal of Fire Sciences, 33(5), 374-389, 2015.
[21] Chen XL, Jiang YF, Liu JB, Jiao CM, Qian Y, Li SX. "Smoke suppression properties of fumed silica on flame-retardant thermoplastic polyurethane based on ammonium polyphosphate". Journal of Thermal Analysis and Calorimetry, 120(3), 1493-1501, 2015.
[22] Wang JC, Chen YH. "Flame-retardant mechanism resulting from an intumescent system". Journal of Fire Sciences, 23(1), 55-74, 2005.
[23] Wang W, Peng Y, Zhang W, Li JZ. "Effect of pentaerythritol on the properties of wood-flour/polypropylene/ ammonium polyphosphate composite system". Bioresources, 10(4), 6917-6927, 2015.
[24] Deng Cl, Deng C, Zhao J, Li R, Fang W, Wang Y. "Simultaneous improvement in the flame retardancy and water resistance of PP/APP through coating UV-curable pentaerythritol triacrylate onto APP". Chinese Journal of Polymer Science, 33(2), 203-214, 2015.
[25] Sun LS, Qu YT, Li SX. "Co-microencapsulate of ammonium polyphosphate and pentaerythritol in intumescent flame-retardant coatings". Journal of Thermal Analysis and Calorimetry, 111(2), 1099-1106, 2013.
[26] Li X, Yang B. "Synergistic effects of pentaerythritol phosphate nickel salt (PPNS) with ammonium polyphosphate in flame retardant of polyethylene". Journal of Thermal Analysis and Calorimetry, 122(1), 359-368, 2015.
[27] Schartel B, Hull TR. "Development of fire-retarded materials - Interpretation of cone calorimeter data". Fire and Materials, 31(5), 327-354, 2007.
[28] Demir H, Arkis E, Balkose D, Ulku S. "Synergistic effect of natural zeolites on flame retardant additives". Polymer Degradation and Stability, 89(3), 478-483, 2005.
[29] ASTM E1354-14, “Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter”. ASTM International, West Conshohocken, PA, USA., 2004.
[30] ISO 5660-1, “Reaction to Fire Tests Heat Release, Smoke Production and Mass Loss Rate, Part 1: Heat Release Rate (Cone Calorimeter Method)”. International Organization for Standardization, Geneva, Switzerland, 2002.
[31] Chung YJ, Kim Y, Kim S. "Flame retardant properties of polyurethane produced by the addition of phosphorous containing polyurethane oligomers (II)". Journal of Industrial and Engineering Chemistry, 15(6), 888-893, 2009.
[32] Konig A, Fehrenbacher U, Kroke E, Hirth T. "Thermal decomposition behavior of the flame retardant melamine in slabstock flexible polyurethane foams". Journal of Fire Sciences, 27(3), 187-211, 2009.
[33] Wu K, Wang ZZ, Hu Y. "Micro encapsulated ammonium polyphosphate with urea-melamine-formaldehyde shell: preparation, characterization, and its flame retardance in polypropylene". Polymers for Advanced Technologies, 19(8), 1118-1125, 2008.
Pamukkale Univ Muh Bilim Derg, 23(8), 984-989, 2017
(16. Uluslararası Malzeme Sempozyumu Özel Sayısı)
B. Aydoğan, N. Usta
989
[34] Yang R, Hu W, Xu L, Song Y, Li J. " Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate". Polymer Degradation and Stability, 122, 102-109, 2015.
[35] Gao L, Zheng G, Zhou Y, Hu L, Feng G. "Thermal performances and fire behaviors of rosin-based rigid polyurethane foam nanocomposites". Journal of Thermal Analysis and Calorimetry, 119, 411–424, 2015.
[36] Zhang M, Luo Z, Zhang J, Chen S, Zhou Y. "Effects of a novel phosphorus nitrogen flame retardant on rosin-based rigid polyurethane foams", Polymer Degradation and Stability, 120, 427-434, 2015.
[37] Valencia LB, Rogaume T, Guillaume E, Rein G, Torero JL. "Analysis of principal gas products during combustion of polyether polyurethane foam at different irradiance levels". Fire Safety Journal, 44(7), 933-940, 2009.
[38] Singh H, Jain AK. "Ignition, Combustion, Toxicity, and Fire Retardancy of Polyurethane Foams: A Comprehensive Review". Journal of Applied Polymer Science, 111(2), 1115-1143, 2009.
[39] Cao ZJ, Dong X, Fu T, Deng SB, Liao W, Wang YZ. " Coated vs. naked red phosphorus: A comparative study on their fire retardancy and smoke suppression for rigid polyurethane foams". Polymer Degradation and Stability, 136, 103-111, 2017.
[40] Aydoğan B. Doğal Mineral İçeren Poliüretan Esaslı Kompozit Malzemelerin Isıl Bozunma ve Yanma Davranışlarının İncelenmesi. Doktora Tezi, Pamukkale Üniversitesi, Denizli, Türkiye, 2015.

Thank you for copying data from http://www.arastirmax.com