You are here

Düşük etkili kentleşme uygulaması: Biyotutmanın hidrolojik performansının deneysel modellerle araştırılması

Low impact development implementation: Investigation on the hydrologic performance of bioretention via experimental models

Journal Name:

Publication Year:

DOI: 
10.5505/pajes.2017.54531
Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Efficient use of water is vital for economic, social and environmental sustainability of water resources. Especially, urbanization and thus high imperviousness results in a decrease in infiltration and percolation. Consequently, surface runoff generated over the surface increases tremendously and results in floods. Surface runoff also washes off the pollutants that are built up on the surface during dry days which results in poor water quality. Therefore, new methods in hydrology are necessary for environmental sustainability, protection of water resources, and mitigation of impacts of urbanization on environment and water resources. In this study, Low Impact Development (LID) Best Management Practices (BMP) are investigated in order to prevent high surface runoff and water pollution due to land use change caused by urbanization. Bioretention, which is a LID type of storm water management practice, is investigated to mitigate impacts of high surface runoff and nonpoint source pollution. For this purpose, an experimental set-up is developed to observe the hydrologic efficiency and performance of bioretention. Performance of bioretention on peak flow decrease is observed by evaluating experimental results. The mechanical properties of materials used in bioretention columns are investigated. It is observed that the material type and properties are effective in retaining water in bioretention. As the sand content increases, the outflow at the exit of the column also increases and if the fine grained material increases, the outflow at the exit of the column decreases.
Abstract (Original Language): 
Su kaynaklarının ekonomik, sosyal ve çevresel açıdan en verimli şekilde kullanılması, canlı hayatın sürdürülebilmesi için kaçınılmazdır. Özellikle kentleşme ile birlikte betonlaşma ve buna paralel olarak topraktaki geçirimsiz yüzey artmakta, toprakta meydana gelen sızma azalmakta ve yağış sonucu yüzeyde toplanan fazla su hızlı bir şekilde akışa geçerek taşkına neden olmaktadır. Kentleşme ile beraber toprağa sızamayan su, doğal arıtım olan topraktan mahrum kalmakta ve yüzeyde biriken kirliliği doğrudan su kaynaklarına taşımaktadır. Bu durum su kalitesini olumsuz yönde etkilemekte ve su kirliliğine neden olmaktadır. Bu çerçevede, çevresel sürdürülebilirliğin sağlanması, su kaynaklarının korunması ve kentleşmenin çevre ve su kaynakları üzerindeki olumsuz etkilerinin azaltılması için yeni hidrolojik yöntemlere ihtiyaç duyulmaktadır. Bu çalışma kapsamında, kentleşme sonucu arazi kullanımında meydana gelen değişimler ile artan yüzeysel akış ve su kirliliğini önlemek için Düşük Etkili Kentleşme (DEK) tipi En İyi Yönetim Uygulamaları (EİYU) incelenmiştir. Yüksek yüzeysel akış ve yayılı kirlilik kaynaklarının olumsuz etkilerini azaltmak için kullanılan bir yağmur suyu yönetimi uygulaması ve DEK çeşidi olan “biyotutma” araştırılmıştır. Bu amaçla kurulmuş olan bir deney düzeneği ile biyotutmanın hidrolojik verimliliği ve performansı gözlemlenmiştir. Yapılan deney sonuçları değerlendirilerek biyotutmanın pik debinin azalması üzerine etkisi incelenmiştir. Biyotutma kolonlarında kullanılan malzemelerin mekanik özellikleri incelenmiştir. Elde edilen sonuçlar değerlendirildiğinde malzeme tipi ve özelliklerinin biyotutma kolonlarında suyun tutulmasında etkili olduğu görülmüştür. Kum içeriğinin fazla olması ile kolonlardaki çıkış debisinin arttığı ve ince taneli malzemelerin artması ile azaldığı gözlemlenmiştir.
1041
1048

REFERENCES

References: 

[1] Jennings DB, Jarnagin, ST. “Changes in anthropogenic impervious surfaces, precipitation and Daily streamflow discharge: A historical perspective in a mid-Atlantic subwatershed”. Landscape Ecology, 17(5), 471–489, 2002.
[2] Davis AP. “Field Performance of Bioretention: Hydrology Impacts”. Journal of Hydrologic Engineering, 13(2), 90-95, 2008.
[3] Davis AP, Hunt W, Traver R, Clarn M. “Bioretention technology: Overview of current practice and future needs”. Journal of Environmental Engineering, 135(3), 109–117, 2009.
[4] Suriya S, Mudgal BV. “Impact of urbanization on flooding: The Thirusoolam sub watershed-A case study”. Journal of Hydrology, 412, 210–219, 2012.
[5] Zhang S, Guo Y. “Stormwater Capture Efficiency of Bioretention Systems”. Water Resources Management, 28 (1), 149–168, 2014.
[6] Gülbaz S, Kazezyılmaz Alhan CM. “Investigating Effects of Low Impact Development on Surface Runoff and TSS with a Calibrated Hydrodynamic Model”. Houille Blanche-Revue Internationale De L Eau, 3, 77–84, 2014.
[7] Brown RA, Hunt WF. “Underdrain configuration to enhance Bioretention exfiltration to reduce pollutant loads”. Journal Environmental Engineering, 137(11), 1082–1091, 2011.
[8] Trowsdale SA, Simcock R. “Urban stormwater treatment using bioretention”. Journal of Hydrology, 397 (3-4), 167–174, 2011.
[9] Li H, Davis AP. “Water quality improvement through reductions of pollutant loads using bioretention”. Journal of Environmental Engineering, 135(8), 567–576, 2009.
[10] Davis AP. “Green engineering principles promote low impact development”. Environmental Science and Technology, 39(16), 338A–344A, 2005.
[11] Dietz ME. “Low impact development practices: A review of current research and recommendations for future directions”. Water Air Soil Pollution, 186(1-4), 351–363, 2007.
[12] Shafique M, Kim R. “Low Impact Development Practices: a Review of Current Research and Recommendations for Future Directions”. Ecological Chemistry And Engineering S-Chemia I Inzynieria Ekologiczna S, 22(4), 543-563, 2015.
[13] Coffman L, Green R, Clar M, Bitter S. “Development of Bioretention practices for stormwater management”. 20th Anniversary Conference-Water Management in the '90s: A Time for Innovation, Washington, United States of America, 1-5 May 1993.
[14] Lucas WC, Sample DJ. “Reducing combined sewer overflows by using outlet controls for Green Stormwater Infrastructure: Case study in Richmond, Virginia”. Journal of Hydrology, 520, 473-488, 2015.
[15] Olszewski J, Davis A. “Comparing the hydrologic performance of a bioretention cell with predevelopment values”. Journal of Irrigation and Drainage Engineering, 139(2), 124-130, 2013.
[16] Brown RA, Hunt WF. “Improwing bioretention/biofiltration performance with restorative maintenance”. Water Science and Technology, 65(2), 361-367, 2012.
[17] Brown R A, Skaggs RW, Hunt WF. “Calibration and validation of DRAINMOD to model bioretention hydrology”. Journal of Hydrology, 486, 430–442, 2013.
[18] Haifeng J, Yuwen L, Shaw LY, Yurong C. “Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village”. Separation and Purification Technology, 84 (SI), 112–119, 2012.
[19] Chen CF, Sheng MY, Chang CL, Kang SF, Lin JY. “Application of the SUSTAIN Model to a Watershed-Scale Case for Water Quality Management”. Water, 6(12), 3575-3589, 2014.
[20] Davis AP, Shokouhian M, Sharma H, Minami C, Winogradoff D. “Water Quality Improvement through Bioretention: Lead, Copper, and Zinc Removal”. Water Environmental Resources, 75(1), 73-82, 2003.
[21] Nichols P, Lucke T. “Evaluatıon of the Long-Term Pollution Removal Performance of Established Bioretention Cells”. International Journal of Geomate, 11(24), 2363-2369, 2016.
[22] Kadıoğlu M. “Küresel İklim Değişimi ve Türkiye”. Sel-Heyelan-Çığ Sempozyumu, Samsun, Türkiye, 29-31 Mayıs 2007.
[23] Özoral E. “Taşkın Koruma Faaliyetlerinde Memba ve Mansap Planlanması ve Yukarı Havza Önlemleri”. Sel-Heyelan-Çığ Sempozyumu, Samsun, Türkiye, 29-31 Mayıs 2007.
[24] Gülbaz S, Kazezyılmaz Alhan CM. “Calibrated Hydrodynamic Model for Sazlıdere Watershed in Istanbul and Investigation of Urbanization Effects”. Journal of Hydrologic Engineering, 18(1), 75–84, 2013.
[25] Jia H, Lu Y, Yu SL, Chen Y. “Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village”. Separation and Purification Technology, 84(SI), 112–119, 2012.
[26] Tillinghast ED, Hunt WF, Jennings GD. “Stormwater control measure (SCM) design standards to limit stream erosion for Piedmont North Carolina”. Journal of Hydrology, 411(3-4), 185–196, 2011.
[27] Gülbaz S, Kazezyılmaz Alhan CM. “Experimental Investigation on Hydrologic Performance of LID with Rainfall-Watershed-Bioretention System”. Journal of Hydrologic Engineering, 22(1), D4016003, 2017.
[28] Lee J, Hyun K, Choi J, Yoon Y, Geronimo, FKF. “Flood reduction analysis on watershed of LID design demonstration district using SWMM5”. Desalination and Water Treatment, 38(1-3), 326–332, 2012.
[29] Hsieh C, Davis AP. “Evaluation and Optimization of Bioretention Media for Treatment of Urban Storm Water Runoff”. Journal of Environmental Engineering, 131(11), 1521-1531, 2005.
Pamukkale Univ Muh Bilim Derg, 23(9), 1041-1048, 2017
(Uluslararası Kentsel Su ve Atıksu Yönetimi Sempozyumu Özel Sayısı)
S. Gülbaz, C. M. Kazezyılmaz-Alhan
1048
[30] Prince George's County Department of Environmental Resources (PGDER), Design Manual for Use of Bioretention in Storm water Management. Division of Environmental Management, Watershed Protection Branch. Landover, MD, 1993.
[31] Allen TP. “Bioretention Design under the 2009 Drainage Design and Erosion Control Manual”. Volume V – Stormwater BMPs. Drainage Manual Thurston County Water Resources Division Resource Stewardship Department, 2010.
[32] Gülbaz S. Yağış-Havza-Biyotutma Sisteminin Hidrolojik-Su Kalitesi Modellemesi ve Deneysel Olarak İncelenmesi. Doktora tezi, İstanbul Üniversitesi. İstanbul, Türkiye, 2015.

Thank you for copying data from http://www.arastirmax.com