You are here

KAPSAMA YAKLAŞIMINA GÖRE KURAL ÜRETEN BİLGİ KEŞFİ ALGORİTMALARINDA ENTROPİ KULLANIMI

USE OF ENTROPY IN THE KNOWLEDGE DISCOVERY ALGORITHMS WHICH GENERATE RULES ACCORDING TO COVERING APPROACH

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
The objective of this paper is to introduce the use of entropy for knowledge acquisition in the algorithms which use the covering approach in inductive learning. REX-1 and REX-2 algorithms, which generate rules based on the covering approach, are compared with other algorithms using the same principle. These algorithms which adapt the mentioned approach generate rules using the search methods. As is used in the algorithms generating the decision tree, the entropy can be used as well in algorithms which utilize the covering approach. While generating rules by search methods, it is vital that the algorithms give priority to the attributes with high complexity in an example set. However, use of entropy attaches the priority to the attributes with lower complexity. ID3 and C4.5 algorithms may be cited among those using the entropy. Instead of direct rule generation, but they use the decision tree to induce rules.
Abstract (Original Language): 
Bu yayının amacı, endüktif öğrenmede kapsama yaklaşımını kullanan algoritmalarda bilgi kazancı için entropi kullanımını sağlamaktır. Kapsama yaklaşımına göre kural üreten REX-1 ve REX-2 algoritmaları aynı metodla kural üreten diğer algoritmalarla karşılaştırılacaktır. Bu algoritmalar arama metodlarını kullanarak kural üretirler. Entropi, karar ağacı üreten algoritmalarda kullanıldığı gibi kapsama yaklaşımını kullanan algoritmalarda da kullanılabilir. Arama metodları tarafından kurallar üretilirken örnek setindeki karmaşıklığı yüksek olan özelliklere öncelik verilmesi kaçınılmazdır. Ancak entropi kullanımı karmaşıklığı daha az olan özelliklere öncelik verir. Entropi kullanan algoritmalar arasında ID3 ve C4.5 sayılabilir. Fakat bu algoritmalar doğrudan kural üretmek yerine karar ağacını kurallara dönüştürürler.
22 - 27

REFERENCES

References: 

[1] Cios, K.J., Liu, N., Goodenday, L.S.,
“Generation of diagnostic rules via inductive
machine learning”, Kybernetes, vol. 22, no 5,
44-56, 1993.
[2] Quinlan, J.R., “Learning efficient classification
procedures and their application to chess end
games”. In: Michalski; R.S., Carbonell, J.G. and
Mitchell, T.M. (Eds), Machine Learning: An
Artificial Intelligence Approach, Tioga
Publishing Co, Palo Alto. CA, 463-482, 1983.
[3] Cheng, J., Fayyad, U.M., Irani, K.B., Qian, Z.,
“Improved decision trees: A generalized version
of ID3”, Proceedings of the Fifth International
Conference on Machine Learning, Ann Arbor,
Michigan, 100-106, 1988.
[4] Quinlan, J.R., “C4.5: Programs for Machine
Learning”, Morgan Kaufmann, San Mateo, CA,
1993.
[5] Michalski, R.S., “A theory and methodology of
inductive learning”, Machine Learning, Palo
Alto, CA, 83-134, 1983.
[6] Kaufman, K.A., Michalski, R.S., "An Adjustable
Rule Learner for Pattern Discovery Using the
AQ Methodology”, Journal of Intelligent
Information Systems, 14, 199-216, 2000.
[7] Pham D. T., Aksoy M.S., “An algorithm for
automatic rule induction”, Artificial Intel. Eng.,
8, 277-282,1993.
[8] Pham, D. T; Dimov, S.S., “An algorithm for
incremental inductive learning”. Proc. Instn.
Mech. Engrs, vol. 211, part B, 239 – 249, 1997.
[9] Pham D. T, Dimov S.S., “The RULES-4
incremental inductive learning algorithm”,
Applications of Artificial Intelligence in
Engineering XII, R.A. Adey G. Rzevski and R.
Teti (Eds) Computational Mechanics
Publications Southampton Boston, 163-166,
1997.
[10] Tolun, M. R., Abu-Soud S.M., “ILA:An
inductive learning algorithm for rule extraction”,
Expert Systems With Applications, Vol: 14, 361-
370, 1998.
[11] Akgöbek Ö., Aydin Y.S., Öztemel E., Aksoy
M.S., “A new algorithm for automatic
knowledge acquisition in inductive learning”,
Knowledge-Based Systems 19, 388-395, 2006.
[12] Akgöbek, Ö., “New algorithms for knowledge
acquisition in inductive learning”, Ph.D. Thesis,
Sakarya University, Sakarya, Turkey, 2003.
[13] Klinkenberg, R., “Rule set quality measures for
inductive learning algorithms”, Master Thesis,
University Of Missouri – Rolla, 1996.
[14] Piramuthu S., Sikora T. R., “Iterative feature
construction for improving inductive learning
algorithms”, Expert Systems with Applications
36,3401-3406, 2009.
[15] Blake, C.L., Merz, C.J., “UCI Repository of
Machine Learning Databases”, [http://ftp.ics.uci.
edu/pub/ml-repos/machine-learning-databases/].
Irvine, CA: University of California, Department
of Information and Computer Science, 1998.
[16] Pham D. T., Dimov S. S., Salem Z., “Technique
for selecting examples in inductive learning”,
ESIT 2000, Aachen, Germany, 2000.
[17] Bramer, M. A., “Inducer: A rule induction
workbench for data mining”, IFIP World
Computer Congress Conference on Intelligent
Information Processing, 2000, Beijing,
Proceedings. Beijing: Publishing House of
Electronics Industry, 499-506, 2000.
[18] Bramer M.A., “Automatic induction of
classification rules from examples using NPrism”,
Research and Development in Intelligent
Systems XVI. Springer-Verlag, 99-121, 2000.
[19] Fournier, D., Cremilleux, B., “A quality index
for decision tree pruning”, Knowledge-Based
System 15, 37-43, 2002.

Thank you for copying data from http://www.arastirmax.com