You are here

[Au(Br)4]- İYONUNUN TİTREŞİM FREKANSLARININ TEORİK OLARAK İNCELENMESİ

THEORETICAL INVESTIGATION OF VIBRATIONAL FREQUENCIES OF [Au(Br)4]-

Journal Name:

Publication Year:

Abstract (2. Language): 
The normal mode frequencies and corresponding vibrational assignments of tetrabromoaurate ion ([Au(Br)4]-) are theoretically examined by means of standard quantum chemical technique. All normal modes have been successfully assigned utilizing the D4h symmetry of [Au(Br)4]-. Calculation has been performed at the Becke-3-Lee-Yang-Parr (B3LYP) density functional method using the Lanl2dz basis set. Infrared and Raman intensities or activities have also been calculated and reported. Theoretical results are successfully compared against available experimental data.
Abstract (Original Language): 
Tetrabromoaurat iyonunun ([Au(Br)4]-) normal mod frekansları ve bunlara karşılık gelen titreşim işaretlemeleri standart kuantum kimyasal teknik yardımıyla teorik olarak incelenmektedir. Tüm normal modlar [Au(Br)4]- iyonunun D4h nokta grubu kullanılarak başarılı bir şekilde işaretlenmiştir. Hesaplama Lanl2dz baz seti kullanılarak B3LYP (Becke-3-Lee-Yang-Parr) yoğunluk fonksiyonel metoduyla gerçekleştirilmiştir. Raman ve infrared şiddetleri veya aktiviteleri de hesaplanmıştır. Teorik sonuçlar mevcut deneysel değerler ile başarılı bir şekilde karşılaştırılmaktadır.
116 - 118

REFERENCES

References: 

[1] K. Nakamoto, Infrared and Raman spectra of inorganic
and coordination compounds, Wiley, New York, 1986.
[2] I. A. Baidina, E. V. Makotchenko, Journal of Structural
Chemistry, 51, 187, 2010.
[3] W. J. Louw, W. Robb, Inorganica Chimica Acta, 9, 33,
1974.
[4] M. A. S. Goher, A. E. H. Abdou, W. H. Yip, T. C. W.
Mak, Polyhedron, 12, 1879, 1993.
[5] J. P. Juste, I. P. Santos, L. M. L. Marzan, P. Mulvaney,
Coordination Chemistry Reviews, 249, 1870, 2005.
[6] A. Molter, F. Mohr, Coordination Chemistry Reviews,
254, 19, 2010.
[7] C. E. Check, T. O. Faust, J. M. Bailey, B. J. Wright, T.
M. Gilbert, L. S. Sunderlin, Journal of Physical Chemistry
A, 105, 8111, 2001.
[8] C. Parlak, Journal of Molecular Structure, 966, 1, 2010.
[9] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270, 1985.
[10] W.R. Wadt, P.J. Hay, J. Chem. Phys. 82, 284, 1985.
[11] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299, 1985.
[12] I. Bytheway, M. W. Wong, Chem. Phys. Lett., 282,
219, 1998.
[13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.
Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V.
Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M.
Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino,
G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E.
Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K.
N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.
Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.
Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E.
Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K.
Morokuma, V.G. Zakrzewski, G. A. Voth, P. Salvador, J. J.
Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B.
Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian
09, Revision A.1, Gaussian Inc., Wallingford CT, 2009.
[14] R.D. Dennington, T. A. Keith, J. M. Millam,
GaussView 5.0.8, Gaussian Inc., 2008.

Thank you for copying data from http://www.arastirmax.com