You are here

FERMENTATİF HİDROJEN ÜRETİM PROSESİNİN MODELLENMESİ

Modeling of fermentative hydrogen production process

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Kinetic models can be used to describe relationship among the principal variables and to explain the behavior of fermentation quantitatively. In addition, it can provide useful information for the anaysis, design and operation of a fermentation process. Many kinetics models have been so far developed for the quantification of the fermentative hydrogen process. This review showed that, in general, the modified Gompertz model and the Anaerobic Digestion Model 1 (ADM1) can be easily used to desribe the progress of substrate degradation, hydrogen-producing bacteria growth, hydrogen production and some soluble metabolite production in a batch fermentative hydrogen production process. The correlation coefficient between the measured and fitted hydrogen evolution by modified the Gompertz model and ADM1 model were high and models were able to predict well the hydrogen profile.
Abstract (Original Language): 
Kinetik modeller, fermentasyonun durumunu nicel olarak açıklamak ve ana değişkenler arasındaki ilişkiyi tanımlamak için kullanılabilir. Ayrıca, kinetik modeller fermentasyon prosesinin analizi, tasarımı ve işletimi için faydalı bilgiler sağlayabilir. Şimdiye kadar fermentatif hidrojen prosesinin nicelleştirilmesi için bazı kinetik modeller geliştirilmiştir. Bu derleme, genel olarak modifiye olmuş Gompertz modeli ve Anaerobik Çürütme Modeli 1 (ADM1)’nın kesikli fermentatif hidrojen üretim prosesinde substrat parçalanması, hidrojen üreten bakterinin büyümesi, hidrojen üretimi ve bazı çözünür metabolitlerin üretimini tanımlamak için kolaylıkla kullanılabildiğini göstermiştir. Modifiye olmuş Gompertz modeli ve ADM1 modeli ile öngörülen ile ölçülen hidrojen gelişim arasındaki korelasyon katsayısı yüksektir, bu modeller hidrojen profilini çok iyi öngörebilecek yeterliliktedir.

REFERENCES

References: 

[1] Mu, Y., Wang, G., Yu, H.Q., Kinetic modeling of batch
hydrogen production process by mixed anaerobic cultures,
Bioresource Technology, 97, 1302-1307, 2006
[2] Wang, J., Wan, W., Kinetic models for fermentative
hydrogen production: A review, International Journal of
Hydrogen Energy, 34, 3313-3323, 2009
[3] Aceves-Lara, C.A., Latrille, E., Bernet, N., Buffiere, P.,
Steyer, J.P., A pseudo-stoichiometric dynamic model of
anaerobic hydrogen production from molasses, Water
Research, 42, 2539-2550, 2008
[4] Van Ginkel, S., Sung, S., Lay, J.J., Biohydrogen
production as a function of pH and substrate concentration,
Environ. Sci. Technol., 35, 4726-4730, 2001.
[5] Kim, S.H., Han, S.K., Shin, H.S., “Feasibility of
biohydrogen production by anaerobic co-digestion of food
waste and sewage sludge”, International Journal of
Hydrogen Energy, 29, 1607-1616, 2004.
[6] Chen, W.H., Chen, S.Y., Khanal, S.K., Sung, S., Kinetic
study of biological hydrogen production by anaerobic
fermentation, International Journal of Hydrogen Energy, 31,
2170-2178, 2006
[7] Patra, S., Sangyoka, S., Boonmee, M., Reungsang A,
Bio-hydrogen production from the fermentation of
sugarcane bagasse hydrolysate by Clostridium butyricum,
International Journal of Hydrogen Energy, 33, 5256-5265,
2008.
[8] Davila-Vazquez, G., Alatriste-Mondragon, F., de Leon-
Rodriguez, A.., Razo-Flores, E., Fermentative hydrogen
production in batch experiments using lactose, cheese whey
and glucose: Influence of initial substrate concentration and
pH, International Journal of Hydrogen Energy, 33, 4989-
4997, 2008
[9] Yuan, Z., Yang, H., Zhi, X., Shen, J., Enhancement
effect of L-cysteine on dark fermentative hydrogen
production, International Journal of Hydrogen Energy, 33,
6535-6540, 2008
[10] Lin, C.Y., Chang, C.C., Hung, C.H., Fermentative
hydrogen production from starch using natural mixed
cultures, International Journal of Hydrogen Energy, 33,
2445-2453, 2008
[11] Argun, H., Kargı, F., Kapdan, İ.K., Öztekin, R., Batch
dark fermentation of powdered wheat starch to hydrogen
gas: Effects of the initial substrate and biomass
concentrations, International Journal of Hydrogen Energy,
33, 6109-6115, 2008
[12] Guo, L., Li, X.M., Bo, X., Yang, Q., Zeng, G.M, Liao,
D., Liu, J.J., Impact of sterilization, microwave and
ultrasonication pretreatment on hydrogen producing using
waste sludge, Bioresource Technology, 99, 3651-3658,
2008.
[13] Baghchehsaraee, B., Nakhla, G., Karamanev, D.,
Margaritis, A., Reid, G., The effect of heat pretreatment
temperature on fermentative hydrogen production using
mixed cultures, International Journal of Hydrogen Energy,
33, 4064-4073, 2008
[14] Danko, A.S., Pinheiro, F., Abreu, A.A., Alves, M.M.,
Effect of methanogenic inhibitors, inocula type, and
temperature on biohydrogen production from food
components, Environmental Engineering and Management
Journal, 7, 531-536, 2008
[15]Argun, H., Kargı, F., Kapdan, I.K., Microbial culture
selection for bio-hydrogen production from waste ground
wheat by dark fermentation, International Journal of
Hydrogen Energy, 34, 2195-2200, 2009
[16] Nath, K., Muthukumar, M., Kumar, A., Das, D.,
Kinetics of two-stage fermentation process fort he
production of hydrogen, International Journal of Hydrogen
Energy, 33, 1195-1203, 2008
[17] Argun, H., Kargı, F., Kapdan, I.K., Hydrogen
production by combined dark and light fermentation of
ground wheat solution, International Journal of Hydrogen
Energy, 34, 4305-4311, 2009
[18] Su, H., Cheng, J., Zhou, J., Song, W., Cen, K.,
Improving hydrogen production from cassava starch by
combination of dark and photo fermentation, International
Journal of Hydrogen Energy, 34, 1780-1786, 2009
[19] Mu, Y., Yu, H.Q., Wang, G., A kinetic approach to
anaerobic hydrogen-producing process, Water research, 41,
1152-1160, 2007.
[20] Gadhamshetty, V., Arudchelvam, Y., Nirmalakhandan,
N., Johnson, D.C., Modeling dark fermentation for
biohydrogen production: ADM1-based model vs. Gompertz
model, International Journal of Hydrogen Energy, 35, 479-
490, 2010
[21] Zwietering, M.H., Jongenburger, I., Rombouts, F.M.,
Riet, K.V., Modeling of the bacterial growth curve, Applied
and Environmental Microbiology, 56 (6), 1875-1881, 1990
[22] Parker, W.J., Application of the ADM1 model to
advanced anaerobic digestion, Bioresource Technology, 96,
1832-1842, 2005
[23] Ntaikou, I., Gavala, H.N., Lyberatos, G., Application of
a modified Anaerobic Digestion Model 1 version for
fermentative hydrogen production from sweet sorghum
extract by Ruminococcus albus, International Journal of
Hydrogen Energy, 35, 3423-3432, 2010
[24] Ntaikou, I., Gavala, H.N., Lyberatos, G., Modeling of
fermentative hydrogen production from the bacterium
Ruminococcus albus: Definition of metabolism and kinetics
during growth on glucose, International Journal of
Hydrogen Energy, 34, 3697-3709, 2009
[25] Penumathsa, B.K.V., Premier, G.C., Kyazze, G.,
Dinsdale, R., Guwwy, A.J., Esteves, S., Rodriguez, J.,
ADM1 can be applied to continuous bio-hydrogen
production using a variable stoichiometry approach, Water
Research, 42, 4379-4385, 2008
[26] Whang, L.M., Hsiao, C.J., Cheng, S.S., A dualsubstrate
steady-state model for biological hydrogen
production in an anaerobic hydrogen fermentation process,
Biotechnology and Bioengineering, 95 (3), 492-500, 2006
[27] Peiris, B.R.H., Rathnasiri, P.G., Johansen, J.E., Kuhn,
A., Bakke, R., ADM1 simulations of hydrogen production,
Water Science & Technolgy, 53 (8), 129-137, 2006
[28] Lo, Y.C., Chen, W.M., Hung, C.H., Chen, S.D., Chang,
J.S., Dark H2 fermentation from sucrose and xylose using
H2-producing indigenous bacteria: feasibility and kinetic
studies, Water Research, 42, 827-842, 2008
[29] Wang, J.L., Wan, W., The effect of substrate
concentration on biohydrogen production by using kinetic
models, Science in China Series B: Chemistry, 51 (11),
1110-1117, 2008
[30] Das, D., Veziroğlu, T.N., Hydrogen production by
biological process: a survey of literature, International
Journal of Hydrogen Energy, 26, 13-28, 2001
[31] Kumar, N., Monga, P.S., Biswas, A.K., Das, D.,
Modelling and simulation of clean fuel production by
Enterobacter cloacae IIT-BT 08, International Journal of
Hydrogen Energy, 25, 945-952, 2000
[32] Fabiano, B., Thermodynamic study and optimization of
hydrogen production by Enterobacter aerogenes,
International Journal of Hydrogen Energy, 27, 149-156,
2002
[33] Lin, C.Y., Temperature effects on fermentative
hydrogen production from xylose using mixed anaerobic
cultures, International Journal of Hydrogen Energy, 33, 43-
50, 2008
[34] Obeid, J., Magnin, J.P., Flaus, J.M., Adrot, O.,
Willison, J.C., Zlatev, R., Modelling of hydrogen production
in batch cultures of the photosynthetic bacterium
Rhodobacter capsulatus, International Journal of Hydrogen
Energy, 34, 180-185, 2009
[35] Ray, S., Reaume, S.J., Lalman, J.A., Developing a
statistical model to predict hydrogen production by a mixed
anaerobic mesophilic, International Journal of Hydrogen
Energy, 35, 5332-5342, 2010
[36] Lay, J.J., Modelling and optimization of anaerobic
digested sludge converting starch to hydrogen,
Biotechnology and Bioengineering, 68 (3), 269-278, 2000
[37] Aceves-Lara, C.A., Latrille, E., Bernet, N., Buffiere, P.,
Steyer, J.P., A pseudo-stoichiometric dynamic model of
anaerobic hydrogen from molasses, Water Research, 42,
2539-2550, 2008
[38] Rao, M.S., Singh, S.P., Bioenergy conversion studies of
organic fraction of MSW: kinetic studies and gas yieldorganic
loading relationships for process optimisation,
Bioresource Technology, 95, 173-185, 2004.

Thank you for copying data from http://www.arastirmax.com