You are here

FİBROMİYALJİ SENDROMUNUN TEŞHİSİNDE KULLANILAN LABORATUAR TESTLERİNİN SEMPATİK DERİ CEVABI PARAMETRELERİYLE DESTEKLENEREK TEŞHİS DOĞRULUĞUNUN ARTTIRILMASI

IMPROVING DIAGNOSTIC ACCURACY BY SUPPORTING THE LABORATORY TESTS WHICH USED FOR DIAGNOSIS OF FIBROMYALGIA SYNDROME WITH THE SYMPATHETIC SKIN RESPONSE PARAMETERS

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In this study, values that were obtained from the blood samples results of Fibromyalgia syndrome (FMS) patients and healthy subjects in the laboratory conditions and the measurements of the sympathetic skin response (SSR) were recorded in Suleyman Demirel University, Faculty of Medicine. Calculated SSR parameters by using Matlab software and the laboratory tests were analyzed separately by artificial neural networks (ANN) and the percentage of accuracy in the diagnosis of FMS was extracted. Later, these two data groups were analyzed together by ANN and the effect of SSR parameters was investigated in the diagnosis of FMS.
Abstract (Original Language): 
Bu çalışmada, Süleyman Demirel Üniversitesi Tıp Fakültesi’nde seçilen tanısı konmuş fibromiyalji sendromlu (FMS) hastalardan ve sağlıklı deneklerden laboratuar ortamında alınan kan örneklerinin analiziyle elde edilen değerler ve yapılan sempatik deri cevabı (SSR) ölçümleri kaydedildi. Matlab yazılımı kullanılarak hesaplanan SSR parametreleri ve laboratuar testleri ayrı ayrı yapay sinir ağlarıyla (YSA) analiz edilerek hastalığın teşhisinde doğruluk yüzdeleri çıkarıldı. Daha sonra bu iki veri grubu bir arada YSA ile analiz edildi ve FMS’nin teşhisinde SSR parametrelerinin etkisi incelendi.

REFERENCES

References: 

[1] Çeliker, R., “Kronik Ağrı Sendromları-Derleme”, Türkiye Fiziksel Tıp ve Rehabilitasyon Dergisi, 51(2): 14-18, 2005.
[2] Krypel, L.L., “Fibromyalgia: A Review of Its Pathophysiology and Drug Treatment”, Journal of Pharmacy Practice, 22: 6–16, Feb. 2009.
[3] Eisinger, J., “Dysautonomia, fibromyalgia and reflex dystrophy”, Arthritis Res. Ther., 9(4):105, 2007.
[4] Fietta, P., Fietta, P., Manganelli, P., “Fibromyalgia and psychiatric disorders”, Acta Biomed., 78(2): 88-95, Aug. 2007.
[5] Wolfe, F., Smythe, H.A., Yunus, M.B., “The American College of Rheumatology 1990 criteria for the classification of fibromyalgia”, Report of the Multicenter Criteria Committee, Arthritis Rheum., 33(2): 160-72, Feb. 2009.
[6] Ulaş, U.H., Unlu, E., Hamamcıoğlu, K., Odabaşı, Z., Cakcı, A., Vural, O., “Dysautonomia in fibromyalgia syndrome: sympathetic skin responses and RR interval analysis”, Rheumatol Int., 26: 383-387, 2006.
[7] Vaerøy, H., Qiao, Z.G., Mørkrid, L., Førre, O., “Altered sympathetic nervous system response in patients with fibromyalgia (fibrositis syndrome)”, J Rheumatol., 16(11): 1460-1465., Nov. 1989.
[8] Özkan, Ö., Yildiz, M., Bilgin, S., Köklükaya, E., “Measuring the sympathetic skin response on body and using as diagnosis-purposed for lung cancer patients by artificial neural networks”, Journal of Medical Systems, 34(3): 407-412, 2010.
[9] Aygül, R., Ulvi, H., Deniz, O., “Normallerde sempatik deri cevabı dalga formları”, İnönü Üniversitesi Tıp Fakültesi Dergisi, 12(2): 77-82, 2005.
[10] Hilz, M.J., Dütsch, M., “Quantitative studies of autonomic function”, Muscle Nerve., 33(1):6-20, Jan 2006.
[11] Ahuja, N.D., Agarwal, A.K., Mahajan, N.M., Mehta, N.H., Kapadia, H.N., “GSR and HRV: Its application in clinical diagnosis”, Proceedings of the 16th IEEE Symposium on Computer-Based Medical Systems (CBMS’03); 2003.
[12] Berker, E., Dinçer N., “Kronik ağrı ve rehabilitasyonu”, Ağrı Dergisi, 17(2): 10-16, 2005.
[13] Lee, C., Yoo, S.K., Park, Y., Kim, N., Jeong, K., Lee, B., “Using neural network to recognize human emotions from heart rate variability and skin resistance”, Proceedings of the 2005 IEEE, Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, September 1–4, 2005.
[14] Okuda-Matsuoka, H., Tanaru, T., Mano, Y., Takayanagi, T., “Sympathetic skin responses in the face by magnetic stimulation of the neck”, Rinsho Shinkeigaku, 36(10): 1190–1192, 1996.
[15] Öztemel, E., “Yapay Sinir Ağları”, Papatya Yayıncılık, 2003.
[16] Sağıroğlu, Ş., Beşdok, E., Erler, M., Mühendislikte yapay zeka uygulamaları-I, Ufuk Kitap Kırtasiye-Yayıncılık Tic. Ltd., 2003.
[17] The MathWorks, Inc., MATLAB® Documentation Neural Network Toolbox Help, “Levenberg-Marquardt Algorithm”, Release 2009a, 2009.

Thank you for copying data from http://www.arastirmax.com