You are here

ARTVİN-MURGUL KALKOPİRİT CEVHERİNİN HİPOKLORİT ÇÖZELTİSİNDEKİ OPTİMUM LİÇ ŞARTLARI

THE OPTIMUM LEACHING CONDITIONS OF ARTVİN MURGUL CHALCOPYRITE ORE IN HYPOCHLORITE SOLUTION

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
The optimum leaching conditions of primary chalcopyrite ore from Artvin-Murgul region in Turkey have been examined in hypochlorite solution. The effects of various parameters as initial pH, hypochlorite concentration, stirring speed, solid/liquid ratio and temperature to the copper dissolution from chalcopyrite were investigated. It was found that chalcopyrite reacted with chlorine generated from hypochlorite in acidic pH values. pH effectively decreased during the dissolution. It was determined that the optimum leaching conditions were initial pH of 5-6, hypochlorite concentration of 0.2 N for 4 g/L solid/liquid ratio, 600 rpm stirring speed and it was seen that sulphate formation was over 50 %.
Abstract (Original Language): 
Artvin-Murgul’dan temin edilmiş olan kalkopirit cevherinin hipoklorit çözeltisindeki optimum liç şartları incelenmiştir. Başlangıç pH’sı, hipoklorit konsantrasyonu, karıştırma hızı, katı/sıvı oranı ve sıcaklığın kalkopirit cevhrinden bakırın çözünürlüğüne etkisi araştırılmıştır. Kalkopirit mineralinin asidik pH değerlerinde hipoklorit çözeltisi ile dengede olan klor ile reaksiyon verdiği bulunmuştur. Çözünme esnasında pH önemli derecede düşmektedir. Optimum liç şartları olarak başlangıç pH’sının 5-6, 4 g/L katı/sıvı oranı için hipoklorit konsantrasyonunun 0,2 N, karıştırma hızının 600 rpm olduğu ve % 50 üzerinde bir sülfat oluşumu olduğu belirlenmiştir.

REFERENCES

References: 

[1]. Habashi, F., Chalcopyrite its chemistry and
metallurgy, McGrew-Hill, London (1978).
[2]. Peters, E., Hydrometallurgical process innovations,
Hydrometallurgy, 29, 431-459, (1992).
[3]. Akçil, A., A preliminary research on acid pressure
leaching pyritic copper ore in Kure Copper Mine,
Turkey, Minerals Engineering, 15, 1193-1197,
(2002).
[4]. Dutrizac, J. E., Elemental sulphur formation during
the ferric sulphate leaching of chalcopyrite,
Canadian Metallurgical Quarterly, 28(4),337-344,
(1989).
[5]. Majima, H., Awakura, Y., Hiroto, T. and Tanaka,
T., Leaching of chalcopyrite in ferric sulphate
solutions. Canadian Metallurgical Quarterly, 24(4)
283-291, (1985).
[6]. Hackl, R. P., Dreisinger, D. B., Peters, E. and King,
J. A., Passivation of chalcopyrite during oxidative
leaching in sulphate media, Hydrometallurgy, 39,
25-48, (1995).
[7]. Havlik, T. and Skrobian, M., Acid leaching of
chalcopyrite in the presence of ozone, Canadian
Metallurgical Quarterly, 29(2), 133-139 (1990).
[8]. Biegler, T. and Swift, D. A., Anodic
electrochemistry of chalcopyrite, Journal of Applied
Electrochemistry, 9, 545-554, (1979).
[9]. Adebayo, A. O., Ipinmoroti, K. O. and Ajavi, O. O.,
Dissolution kinetics of chalcopyrite with hydrogen
peroxide in sulphuric acid medium, Chemical and
Biochemical Engineering Quarterly, 17(3), 213-218,
(2003).
[10]. Antonijevic, M. M., Jankovic, Z. D. and
Dimitrijevic, M. D., Kinetics of chalcopyrite
dissolution by hydrogen peroxide in sulphuric acid,
Hydrometallurgy, 71( 3-4), 329-334, (2004).
[11]. Çolak, S., Alkan, M. and Kocakerim, M. M.,
Dissolution kinetics of chalcopyrite containing
pyrite in water saturated with chlorine,
Hydrometallurgy, 18, 183-193, (1987).
[12] Devi, N. B., Madhuchhanda, M., Rao, K. S., Rath,
P. C. and Paramguru, R. K., Oxidation of
chalcopyrite in the presence of manganese dioxide
in hydrochloric acid medium, Hydrometallurgy, 57,
57-76 (2000).
[13]. Puvvada, G. V. K. and Murthy, D. S. R., Selective
precious metals leaching from a chalcopyrite using
chloride/hypochlorite media, Hydrometallurgy, 58,
185-191, (2000).
[14]. Antonijevic, M. M. and Bogdanovic, G. D.,
Investigation of the leaching of chalcopyrite ore in
acidic solutions, Hydrometallurgy, 73, 245-256,
(2004).
[15]. Ekinci, Z., Çolak, S., Çakıcı, A. and Saraç, H.,
Leaching kinetics of sphalerite with pyrite in
chlorine saturated water, Minerals Engineering,
11(3), 279-283, (1998).
[16]. Herreros, O., Quiroz, R. and Vinals, J., Dissolution
kinatics of copper, white metal and natural
chalcocite in Cl2/Cl- media, Hydrometallurgy, 51,
345-357, (1999).
[17]. Jena, P. K., Barbosa-Filho, O. and Vasconcelos, I.
C., Studies on the kinetics of slurry chlorination of a
sphalerite concentrate by chlorine gas,
Hydrometallurgy, 52, 111-122, (1999).
[18]. Kanari, N., Gaballah, I. and Allain, E., A low
temperature chlorination-volatilization process for
the treatment of chalcopyrite concentrates,
Thermochimica Acta, 373, 75-93, (2001).
[19]. Herreros, O., Quiroz, R., Hernandez, M. C. and
Vinals, J., Dissolution kinetics of enargite in dilute
Cl2/Cl- media. Hydrometallurgy, 64, 153-160,
(2002).
[20]. Vinals, J., Roca, A., Hernandez, M. C. and
Benavente, O., Topochemical transformation of
enargite into copper oxide by hypochlorite leaching,
Hydrometallurgy, 68, 183-193 (2003).
[21]. Li, W., Coal desulfurization with sodium
hypochlorite, Master Of Science in Chemical
Enginering, West Virginia University-(2004).
[22]. Curreli, L., Ghiani, M., Surracco., M. and Orru, G.,
Beneficiation of a gold bearing enargite ore by
flotation and Arsenic leaching with sodium
hypochlorite, Minerals Engineering, 18(8), 849-854
(2005).
[23]. Alkan, M., Oktay, M., Kocakerim M. M. and
Çopur, M., Solubility of chlorine in aqueous
hydrochloric acid solutions, Journal of Hazardous
Materials, A119, 13-18, (2005).

Thank you for copying data from http://www.arastirmax.com