You are here

KAMIŞLI ENSTRÜMAN SESLERİNİN İSTATİSTİKSEL SİNİR AĞLARI İLE TANINMASI

RECOGNITION OF THE REED INSTRUMENT SOUNDS BY USING STATISTICAL NEURAL NETWORKS

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this paper, reed instrument sounds were recognised by using statistical neural networks. Linear prediction coefficients were used as features. Three different statistical neural network structures were used for this task. The best structure and it’s parameters were determined.
Abstract (Original Language): 
Bu çalışmada, kamışlı nefesliler ailesinden 4 enstrümanın sesleri, doğrusal öngörü katsayıları kullanılarak istatistiksel sinir ağları yardımıyla sınıflandırılmıştır. Sınıflayıcı olarak 3 farklı istatistiksel sinir ağı kullanılmış ve en yüksek başarıma sahip olan ağ yapısı ve parametreleri tespit edilmiştir.
FULL TEXT (PDF): 
36-42

REFERENCES

References: 

[1] Brown, J. C., Houix, O., and McAdams, S., “Feature Dependence in the Automatic
Identification Of Musical Woodwind Instruments”, J. Acoustical Society of America, 109,
1064 - 1072, 2001.
[2] Brown, J. C., “Computer Identification of Musical Instruments Using Pattern Recognition
with Cepstral Coefficients as Features”, J. Acoustical Society of America, 105, 1933 -
1941, 1999.
[3] Martin, K. D., “Sound-Source Recognition: A Theory and Computational Model”, PhD.
Thesis, Massachusetts Institute of Technology, Department of Electrical Engineering and
Computer Science, 1999.
[4] Campbell, W. C. and Heller, J. J., “The Contribution of the Legato Transient to
Instrument Identification”, Proc. Research Symposium on Psychology and Acoustics of
Music, 1978, 30-44.
[5] Berger, K. W., “Some Factors in the Recognition of Timbre”, J. Audio Engineering
Society, 30, 396-406, 1964.
[6] Fujinaga, I. and MacMillan, K., “Realtime Recognition of Orchestral Instruments”, Proc.
International Computer Music Conference, Berlin, Germany, 2000, 141-143.
[7] Fraser, A. and Fujinaga, I., “Toward Realtime Recognition of Acoustic Musical
Instruments”, Proc. International Computer Music Conference, Beijing, China, 1999 175-
177.
[8] Kaminskyj, I., and Materka, A., "Automatic Source Identification of Monophonic Musical
Instrument Sounds", IEEE Int. Conf. Neural Networks 1995, USA, 1995, 189-194.
[9] Kostek, B. and Czyzewski, A., “Automatic Recognition of Musical Istrument Sounds –
Further Developments”, Proc. 110th Audio Engineering Society Convention, Amsterdam,
Netherlands, 2001.
[10] Martin, K. D., “Musical Instrument Recognition : A Pattern Recognition Approach”,
Presented at 136th Meeting of the Acoustical Society of America, Norfolk, USA, 1998.
[11] Eronen A., “Automatic Musical Instrument Recognition”, MsC. Thesis, Tampere
University of Technology, Department of Information Technology, 2001.
[12] Schmid, C. E., “Acoustic Pattern Recognition of Musical Instruments”, PhD. Thesis,
University of Washington, 1977.
[13] Haykin, S., “Adaptive Filter Theory”, Prentice Hall, NY, 1991.
[14] Hayes, M. H., “Statistical Digital Signal Processing and Modelling”, John Wiley & Sons,
NY, 1996.
[15] Verleysen, M. and Hlavackova, K., “An Optimized RBF Network for Approximation of
Functions”, Proc. European Symposium on Artificial Neural Networks”, Brussels,
Belgium, 1994, 175-180.
[16] Paredes, V. and Vidal, E., “A Class-Dependent Weighted Dissimilarity Measure for
Nearest Neigbor Classification Problem”, Pattern Recogntion Letters, 21, 1027 - 1036,
2000.
[17] Wong, H. S., Wu, M., Joyce, R. A., et al., “A Neural Network Approach for Predicting
Network Resource Requirements in Video Transmission Systems”, Proc. IEEE Pacific
RIM Conference on Multimedia, Sydney, Australia, 2000.
[18] Goh, T. C., “Probabilistic Neural Network for Evaluating Seismic Liquefaction
Potential”, Proc. IEEE Int. Symposium on Intelligent Systems, Varna, Bulgaria, 2002, 16-
20.
[19] Parzen, E., “On Estimation of a Probability Density Function and Mode”, Annals of
Mathematical Statistics, 33, 1065 - 1076, 1962.

Thank you for copying data from http://www.arastirmax.com