You are here

GEOMETRİK OLARAK LİNEER OLMAYAN UZAY ÇELİK ÇERÇEVELERİN TABU ARAMA YÖNTEMİİLE OPTİMUM BOYUTLANDIRILMASI

OPTIMUM DESIGN OF NONLINEAR STEEL SPACE FRAMES VIA TABU SEARCH METHOD

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, an algorithm and its computer program were developed for the optimum design of steel space frames using tabu search method. Two methods were followed and the results obtained from these methods were compared. Geometrical nonlinearity was considered and the material was assumed to be linear-elastic in the analysis of the space frames. The lateral and vertical loads, lateral displacement, interstory drift and stress constraints imposed on the frames were taken from the relevant design codes. Moreover, section size constraints was considered in the optimum design. In this study, obtaining of minimum-weight frames was aimed under the above mentioned loads and constraints. Optimization methods have to be suitable for employing discrete design variables because of using standard steel sections in the design of steel frames. Tabu search is suitable optimization method for using discrete design variables. Optimum designs of two steel space frame were performed to show the applications of the developed algorithms and computer programs.
Abstract (Original Language): 
Bu çalışmada, uzay çelik çerçevelerin tabu arama yöntemiyle optimum boyutlandırması için bir algoritma ve bunun bilgisayar programı geliştirilmiştir. Tabu aramada iki yöntem kullanılmış ve elde edilen sonuçlar karşılaştırılmıştır. Çerçevelerin analizinde geometrik bakımdan lineer olmama etkileri göz önüne alınmış, malzeme lineer elastik kabul edilmiştir. Çerçevelere etki eden yatay ve düşey yük değerleri ile yanal deplasman, göreli kat ötelenmesi ve gerilme sınırlayıcıları ilgili boyutlandırma yönetmeliklerine uygun olarak alınmıştır. Ayrıca optimum boyutlandırmada kesit boyut sınırlayıcıları da kullanılmıştır. Yukarıda bahsedilen yükler ve sınırlayıcılar altında minimum ağırlıklı çerçevelerin elde edilmesi amaçlanmıştır. Çelik çerçevelerin boyutlandırmasında standart çelik profiller kullanıldığından optimizasyon yönteminin ayrık boyutlandırma değişkenlerine uygun bir yöntem olması gerekmektedir. Tabu arama bu duruma uygun bir optimizasyon yöntemidir. Geliştirilen algoritma ve bilgisayar programının uygulaması olarak iki tane uzay çelik çerçevenin optimum boyutlandırması yukarıda bahsedilen yöntemlerle yapılmıştır.
117-128

REFERENCES

References: 

[1] Glover, F., “Heuristics for Integer Programming Using Surrogate Constraints”, Decision
Sciences, 8, 156-166, 1977.
[2] Glover, F., “Tabu Search-Part I”, ORSA Journal on Computing, 1, 3, 190-206, 1989.
[3] Glover, F., “Tabu Search-Part II”, ORSA Journal on Computing, 2, 1, 4-32, 1990.
[4] Bland, J.A. and Dawson, G.P., “Tabu Search and Design Optimization”, Computer-
Aided Design, 23, 3, 195-201, 1991.
[5] Dell’Amico M. and Trubian M., “Applying Tabu Search to the Job-Shop Scheduling
Problem”, Annals of Operations Research, 41, 231-252, 1993.
[6] Mooney, E.L. and Rardin, R.L., “Tabu Search for a Class of Scheduling Problems”,
Annals of Operations Research, 41, 253-278, 1993.
[7] Blazewicz, J., Hawryluk, P. and Walkowiak, R., “Using a Tabu Search Approach for
Solving the Two-Dimensional Irregular Cutting Problems”, Annals of Operations
Research, 41, 313-325, 1993.
[8] Salomon, M. and Kuik R., “Statistical Search Methods for Lotsizing Problems”, Annals
of Operations Research, 41, 453-468, 1993.
[9] Semet, F. and Taillard E., “Solving Real-Life Vehicle Routing Problems Efficiently Using
Tabu Search”, Annals of Operations Research, 41, 469-488, 1993.
[10] Mayer, D.G., Belward, J.A. and Burrage, K., “Tabu Search not an Optimal Choice for
Models of Agricultural Systems”, Agricultural Systems, 58, 2, 243-251, 1998.
[11] Eugenio, C., Fanni, A. and Giacinto, G., “A Tabu Search Algorithm for the Optimisation
of Telecommunication Networks”, European Journal of Operational Research, 106, 2-3,
357-372, 1998.
[12] Hu, N., “Tabu Search Method with Random Moves for Globally Optimal Design”,
International Journal for Numerical Methods in Engineering, 35, 1055-1070, 1992.
[13] Dhingra, A.K. and Bennage, W.A., “Discrete and Continuous Variable Structural
Optimization Using Tabu Search”, Engineering Optimization, 24, 177-196, 1995.
[14] Bland, J.A., “Discrete-Variable Optimal Structural Design Using Tabu Search”, Structural
Optimization, 10, 87-93, 1995.
[15] Bennage W.A. and Dhingra, A.K., “Optimization of Truss Topology Using Tabu Search,
International Journal for Numerical Methods in Engineering”, 38, 4035-4052, 1995.
[16] Bland, J.A., “Structural Design Optimization with Reliability Constraints Using Tabu
Search”, Engineering Optimization, 30, 55-74, 1998.
[17] Bland, J.A., “A Memory-Based Technique for Optimal Structural Design”, Engineering
Applications of Artificial Intelligence, 11, 3, 319-325, 1998.
[18] Manoharan, S. and Shanmuganathan, S., “A Comparison of Search Mechanisms for
Structural Optimization”, Computers & Structures, 73, 1-5, 363-372, 1999.
[19] Sait, M.S. and Zahra M. M. , “Tabu Search Based Circuit Optimization”, Engineering
Applications of Artificial Intelligence, 15, 3-4, 357-368, 2002.
[20] Mladenovic, N., Petrovic, J., Vujcic, V.K., Cangalovic, M., “Solving Spread Spectrum
Radar Polyphase Code Design Problem by Tabu Search and Variable Neighbourhood
Search”, European Journal of Operational Research, 151, 2, 389-399, 2003.
[21] Jeon, Y.J. and Kim, J.C., “Application of Simulated Annealing and Tabu Search for Loss
Minimization in Distribution Systems”, Electrical Power & Energy Systems, 26, 1, 9-18,
2004.
[22] Glover, F. and Laguna M., Tabu Search, In: Colin R. Reeves (editor), “Modern Heuristic
Techniques for Combinatorial Problems”, Blackwell Scientific Publications, Osney Mead,
Oxford, 70-150, 1992.
[23] Glover, F. and Laguna M., “Tabu Search”, Kluwer Academic Publishers, Massachusetts,
1997.
[24] TS 648, “Çelik Yapıların Hesap ve Yapım Kuralları”, Türk Standartları Enstitüsü,
Ankara, 1980.
[25] Dumonteil, P., “Simple Equations for Effective Length Factors”, Engineering Journal,
AISC, 3, 111-115, 1992.
[26] Levy, R. and Spillers, W.R., “Analysis of Geometrically Nonlinear Structures”, Chapman
and Hall, New York, 1994.
[27] Spillers, W. R., “Geometric Stiffness Matrix for Space Frames”, Computers & Structures,
36, 1, 39-37, 1990.
[28] American Institute of Steel Construction, “Manual of Steel Construction - Allowable
Stress Design”, Chicago, 1989.
[29] TS 498, “Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri”,
Türk Standartları Enstitüsü, Ankara, 1997.
[30] Değertekin, S.O., “Lineer Olmayan Uzay Çelik Çerçevelerin Tabu Arama Yöntemiyle
Optimum Tasarımı”, Doktora Tezi, Mühendislik Fakültesi, Fırat Üniversitesi, 2005.

Thank you for copying data from http://www.arastirmax.com