You are here

KANAL İÇERİSİNE YERLEŞTİRİLEN KARE KESİTLİ ENGELİN ISI TRANSFERİNE ETKİLERİNİN DENEYSEL OLARAK İNCELENMESİ

EXPERIMENTALLY INVESTIGATION OF THE EFFECT OF A SQUARE CROSS-SECTIONAL OBSTACLE LOCATED IN A CHANNEL ON HEAT TRANSFER

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In the present study, the effects of a square cross-sectional obstacle, located before the heated zone of a rectangular channel normal to the flow direction and parallel to the heated surface, on heat transfer and friction characteristics are investigated, experimentally. The experiments were conducted for Re number in the range of 3.103 <Re<15.103 . It was seen that, the size and location of the obstacle, which can be changed vertically and horizontally, affect heat transfer. Optimum parameters that cause maximum heat transfer enhancement were determined. 142 % heat transfer enhancement was obtained with the obstacle for optimum conditions while increase in friction factor was 200 %.
Abstract (Original Language): 
Bu çalışmada, dikdörtgen kesitli bir kanalın içerisinde –ısıtma bölgesi önüne- akışa dik ve kanal tabanına paralel olarak yerleştirilen kare kesitli bir engelin ısı transferi ve sürtünme kayıp karakteristikleri üzerindeki etkileri deneysel olarak incelenmiştir. Reynolds sayısının 3.103 <Re<15.103 aralığında incelendiği çalışmada, yatay ve düşey doğrultuda konumu değiştirilen engelin konumunun ve boyutlarının ısı transferi üzerinde etkili olduğu ve maksimum ısı transferinin elde edildiği optimum parametreler tespit edilmiştir. Kanal içerisine yerleştirilen engelin-optimum konum ve boyutta- ısı transferinde %142 gibi bir iyileşme sağladığı ancak, sürtünme kayıplarında %200 oranında bir artışın olduğu belirlenmiştir.
FULL TEXT (PDF): 
65-73

REFERENCES

References: 

[1] Young T. J., Vafai. K., “Experimental and numerical investigation of forced convective
characteristics of array of channel mounted obstacles”, ASME J. Heat Transfer 121, 34-
42, 1999.
[2] Wang Y., Vafai. K., “Heat transfer and pressure loss characterization in a channel with
discrete flush-mounted and protruding heat sources”, Experimental Heat Transfer 12, 1-
16, 1999.
[3] Jubran B. A., Al-Salaymeh. A.S., “Thermal wakes measurement in electronic modules in
the presence of heat transfer enhancement devices”, Appl. Thermal Engrg. 19, 1081-1096,
1999.
[4] Meinders E.R., Hanjalic K., “Experimental Heat Transfer from in-line and staggered
configuration of two wall-mounted cubes”, Internat. J. Heat Mass Transfer 45, 465-482,
2002.
[5] Tropea C. D., Gackstatter R.,” The flow over two dimensional surface-mounted obstacles
at low Reynolds numbers”, J. Fluid Engrg. 107 (1985) 489-494.
[6] Davalath J., Bayazitoglu, Y., “Forced convection cooling across rectangular blocks”, J.
Heat Transfer 109, 321-328, 1987.
[7] Perng H.W. Wu., S.W., “Effect of an oblique plate on the heat transfer enhancement of
mixed convection over heated blocks in horizontal channel”, Internat. J. Heat and Mass
Transfer 42, 1217-1235, 1999.
[8] Sultan G.I., “Enhancing forced convection heat transfer from multiple protruding heat
sources simulating electronic components in horizontal channel by passive cooling”,
Microelectronics J. 31, 773-779, 2000.
[9] Leung C.W., .Cihan T.L, Robert S.D., Kang H.J., “Forced convection from a horizontal
ribbed rectangular base plate penetrated by arrays of holes”, Appl. Energy 62, 81-95,
1999.
[10] Jubran B.A., Swiety S.A., Hamdan M.A., “Convective heat transfer and pressure drop
characteristics of various array configurations to simulate the cooling of electronic
modules”, Intrenat. J.Heat Mass transfer 39, 3519-3529, 1996.
[11] Wang L., Sunden B., “Experimental Investigation of Local Heat Transfer in a SquareDuct
with Continuous and Truncated Ribs”, Experimental Heat Transfer, 18, 179-197, 2005.

Thank you for copying data from http://www.arastirmax.com