You are here

DOĞAL GAZDAN HİDROJEN ÜRETİMİNDE ISIL YÖNTEMLER

PRODUCING HYDROGEN FROM NATURAL GAS BY THERMAL METHODS

Journal Name:

Publication Year:

Abstract (2. Language): 
Thermal methods like steam reformation (SR), partial oxidation (POx), autothermal reformation(ATR) and thermal decomposition (TD) are hydrogen producing methods which are studied on frequently. Increase of reformation efficiency by development of catalizors and decrement of reactor sizes are the main observed points. Also decrement of temperature and pressure values which are 700-1300o C and 20-56 atm main target of case studies. For removeable and conventional usage, production of hydrogen with the cheapest and easy method is the main goal of improving these methods. On the other side; gasification, biochemical processes and electrolysis are also being used for producing hydrogen. The main problem is the lack of cheap electric energy source during electrolysis. Despite the biochemical processes’high costs and complex device requirements researches are being continued on, but stil not accaptable for applicaitons. It is known that gasification process comes true between the range of 800- 2000o C and on 40 atm pressure. Adding that process efficiency is 55% that a low reaction completion grade. Researches on gasification process are being continued on with more interest than biochemical processes.
Abstract (Original Language): 
Buharla dönüşüm (BD), kısmi oksidasyon (KO), sıcaklık özdenetimli dönüşüm (SD), ısıl ayrışma (IA) gibi ısıl yöntemler hidrojenin üretimi için üzerinde çok çalışılan yöntemlerdir. Katalizörlerin geliştirilmesi, reaktör boyutlarının daha küçük ölçeklere indirgenmesiyle dönüşüm verimlerinin arttırılması, her bir ısıl yöntemde geçerli olan yüksek sıcaklık (700–13000 C) ve yüksek basınç (20–56 atm) aralıklarındaki çalışma koşullarının daha düşük basınç ve sıcaklık seviyelerine indirmesi, yapılan çalışmalarda gözlenen temel unsurlardır. Taşınabilir ya da yerel kullanımlara uygun en ucuz ve kolay yöntemle hidrojen üretimini sağlamak bu yöntemleri geliştirmenin temel amacı haline gelmiştir. Hidrojen üretiminde ısıl yöntemler kullanıldığı gibi, diğer yandan, gazlaştırma, biyokimyasal ve elektroliz yöntemleri ile de hidrojen üretilmektedir. Elektroliz yöntemine ait üretim sürecinde kullanılacak olan elektrik enerji kaynağının ucuza temin edilmesi sorunu vardır. Biyokimyasal yöntem, pahalı, karmaşık cihaz ve düzeneklere ihtiyaç olması nedeniyle henüz uygulamaya uygun olmasa da araştırmalar sürmektedir. Gazlaştırma yöntemi ise; 800-20000 C arası sıcaklık ve 40 atm. basınç gibi yüksek süreç değerlerinde hidrojen üretimi gerçekleşmekte ayrıca %55 gibi düşük reaksiyon tamamlanma derecesinde kalmaktadır. Gazlaştırma süreci için çalışmalar, biyokimyasal yönteme göre daha fazla ilgiyle sürmektedir.
FULL TEXT (PDF): 
1-17

REFERENCES

References: 

[1] Dinçer, I., Rosen MA, Energy, Environment and Sustainable Development, Applied
Energy, 64, 427-440, 1999.
[2] Dinçer, I., Renewable Energy and Sustainable Development a Crucial Review, Renewable
and Sustainable Energy Reviews, 4, 157-175, 2000.
[3] McMullan, JT, Refrigeration and the Environment, WEL’2000, 3-11, S.Arabia, 2000.
[4] Chalk S.G., Milliken, J., Venkateswaran S., The US Department of Energy-investing in
Clean Transport, Journal of Power Science, 71, 1-2, 26-35, 1998.
[5] Chalk S.G., Miller J.F., Wagner F.W., Challenges for Fuel Cells in Transport
Applications, Journal of Power Sources, 86, 40-51, 2000.
[6] Shukla K., Christensen P.A., Dickinson A.J., Hamnett, A., A Liquid-Feed Solid Polymer
Electrolyte Direct Methanol Fuel Cell Operating at Near-Ambient Conditions,
Journal of Power Sources, 76, 1, 54-59, 1998.
[7] Elektrik İşleri Etüt İdaresi Genel Müdürlüğü (2008)
www.eie.gov.tr/hidrojen/hidrojen enerjisi.html [erişim tarihi: 28.03.2008]
[8] Anonymous, Bmft, Renewable Energy, Germany, 1992.
[9] Regar,K.N., Pehr,K., Der neue BMW 735L mit Wasserstoffantrieb In VDI Berichte
Nr.725, Wasserstoff-Energietechnik II, 187-196, 1989.
[10] Herdin,G., Wasserstoff als Antriebenergie für konventionelle Ottomotoren, wasserstoff
Expo, Jenbacher AG, Hamburg, 2001.
[11] Pehr, K., Burckhard, S., Mit Wasserstoff in die Zukunft-Der BMW 750hl, In
Vorbereitung für ATZ, 2002.
[12] Geitmann, S., Wasserstoff und Brennstoffzellen ,:67-79, Berlin, 2001.
[13] Scheuerer, K., Energietaeger Wasserstoff, Wasserstoffmotor und Brennstoffzellen, BMW
Group, 2004.
[14] Bauen, H., Assesment of the Enviromental Benefits of Transport and Stationary Fuel Cell,
Journal of Power Sources, 86, 482-494, 2000
[15] Brown L. F., A Comperative Study of Fuels for on-board Hydrogen Production for
Fuel-Cell-Powered Automobiles, International Journal of Hydrogen Energy, 26, 381-397,
2001.
[16] Awan, T., The European Fuel Cell Market for Vehicles, Components and Fuel Retailing
Report code: 3972, 2001.
[17] Hart, D., Sustainable Energy Conversion: Fuel Cells- the Competitive Option?, Journal
of Power Sources, 86, 23-27, 2000.
[18] FreedomCAR Partnership Plan, ABD Enerji Bakanlığı, 2002.
[19] National Hydrogen Energy Roadmap, ABD Enerji Bakanlığı, 2002.
[20] Fuel Cell Report to Congress, 2003.
[21] Calculating hydrogen production costs, EV World: The World of Electric, Hybrid & Fuel
Cell Vehicles, 2003.
[22] Walsh, B., Portable Fuel Cell Transportation Regulations, Fuel Cell Catalyst, 4, 4, 2,
2004.
[23] Muradov, NZ, CO2
-free Production of Hydrogen by Catalytic Pyrolysis of Hydrocarbon
Fuel, Energy and Fuels, 12, 1, 41-48, 1998.
[24] Guhencin A.F., Review of Fuel Processing Catalyst for Hydrogen Production in PEM
Fuel Cell Systems, Current Opinion in Solid State Mat. Science, Vol.16, Issue.5,
389-399, 2002.
[25] Momirlan M., Veziroğlu T.N., Current Status of Hydrogen Energy, Renewable and
Sustainable Energy Reviews, 6, 141-179, 2002.
[26] Koku H., Eroğlu İ, Gündüz U., Yücel M., Türker L., Kinetics of Biological Hydrogen
Production by the Photosynthetic Bacterium Rhodobacter Sphaeroides O.U.001., Int.J.
Hydrohen Energy, 28, 381-388, 2003.
[27] Koku H., Eroğlu İ, Gündüz U., Yücel M., Türker L., Aspects of the Metabolism of
Hydrogen Production by Rhodobacter Sphaeroides, Int.J. Hydrogen Energy, 27,
1315-1329, 2002.
[28] Simbeck, DR, Hydrogen Costs with CO2 Capture, 7th International Conference on
Greenhouse Gas Control Technologies, GHGT-7, Vancover, Canada, 2004.
[29] Sanıgök Ü., Anorganik Endüstriyel Kimya, İ.Ü. Müh. Fak. Kimya Müh. Böl., İ..Ü.
Yayınları, İstanbul, 1987.
[30] Rosen, MA., Thermodynamics Investigation of Hydrogen Production by Steam- Methane
Reformation, International Journal of Hydrogen Energy,16, 3, 207-217, 1991.
[31] Muradov N., Thermocatalytıc C02
-Free Productıon of Hydrogen From Hydrocarbon
Fuels, Proceedings of the 2000 DOE Hydrogen Program Review, 1, NREL/CP-50-
28890, 2000.
[32] Adhikari, S., Fernando S., Hydrogen Membrane Seperation Techniques, Ind.Eng. Chem.
Res.45, 875-881, 2006.
[33] Piel A., Hirt, M., Steigies C.T., Plasma Diagnostics with a Langnuir Probes in the
Equatorial Ionospere, Journal of Physics D: App. Phy., 34, 7, 3643-3649, 2001.
[34] Kikuchi E., Membrane Reactor Application to Hydrogen Production, Catalysis Today, 56,
97-101, 2000.
[35] Tong J., Matsumura Y., Pure Hydrogen Production by Methane Steam Reforming with
Hydrogen-Permeable Membrane Reactor, Catalysis Today, 111, 147-152, 2006.
[36] Simpson A.P., Lutz A.E., Exergy Analysis of Hydrogen Production via Steam Methane
Reforming, International Journal of Hydrogen Energy, 32,18, 4811-4820, 2007.
[37] Deminsky, M., Jivotov, V., Potapkin, B., Rusanov, V., Plasma-assisted Production of
Hydrogen From Hydrocarbons, Pure Appl. Cem., 74, 3, 413-418, 2002.
[38] Ghorbanzadeh AM, Norouzi S., Mohammadi T., High Energy Efficiency in Syngas and
Hydrocarbon Production from Dissociation of CH4 – CO2
Mixture in a Non-equlibrium
Pulsed Plasma, J. Phys.D: Appl. Phys., 38, 3804-3811, 2005.
[39] Sarmiento B., Brey J.J., Viera I.G., González-Elipe A.R., Rico V.J., Hydrogen Production
by Reforming of Hydrocarbons and Alcohols in a Dielectric Barrier Discharge, Journal of
Power Sources, 169, 1, 140-143, 2007.
[40] Lutz A., Bradshaw R., Keller, J., Witmer, D., Thermodynamic Analysis of Hydrogen
Production by Steam Reforming, International Journal of Hydrogen Energy, 28, 159-
167, 2003.
[41] Gallucci F., Paturzo L., Basile A., A Simulation Study of the Steam Reforming of
Methane in a Dense Tubular Membrane Reactor, International Journal of Hydrogen
Energy, 29, 6, 611-617, 2004.
[42] Wait, MF, R&D of a PEM Fuel Cell, Hydrogen Reformer and Vehicle Refueling Facility,
Hydrogen and Fuel Cell Merit Review Meeting, Washington DC, 2005.
[43] Ahmed S., Krumpelt M., Hydrogen from Hydrocarbon Fuels for Fuel Cells,
International Journal of Hydrogen Energy, 26, 291-301, 2001.
[44] Balasubramanian B., Ortiz A.L., Kaytakoğlu S., Harisson D.P., Hydrogen from
Methane in a Single-Step Process, Chemical Engineering Science, 54, 3543-3552,1999.
[45] Okada O., Yokoyama K., Development of Polymer Electrolyte Fuel Cell Cogeneration
Systems for Residential Applications, Fuel Cells, 1, 1, 72-77, 2001.
[46] Britz P., Zartenar N., PEM-Fuel Cell System for Residential Applications, Fuel Cells, 4,
269 – 275, 2004.
[47] Choi Y., Stenger H., Water Gas Shift Reaction Kinetics and Reactor Modeling for Fuel
Cell Grade Hydrogen, Journal of Power Sources, 124, 432-439, 2003.
[48] Nielsen M.P., Modelling a Steam Reformer for a Fuel Cell System, Published
Internally at Aalborg University in ‘Ph.D. Papers in Technology and Science’, 2002.
[49] Chen Z., YanY., Elnashaie S.E.H., Modeling and Optimization of Novel
Membrane Reformer for Hydrocarbons, AIChE Journal, 49, 5,1250-1265, 2003.
[50] Chen Z., YanY., Elnashaie S.E.H., Optimization of Reforming Parameter and
Configiration for Hydrogen Production, AIChE Journal, 51, 5, 1467-1481, 2005.
[51] Ouni F., Khacef A., Cormier J.M., Effect of Oxygen on Methane Steam Reforming in a
Sliding Discharge Reactor, Chemical Eng. Tech., 29, 5, 604-609, 2006.
[52] Stutz, M.J., Poulikakos D., Optimum Washcoat thickness of a Monolith Reactor for
Syngas Production by Partial Oxidation of Methane-1, Chemical Engineering Science,
4027-4040, 2006.
[53] Chang, FW, Lai, SC, Roselin, S., Hydrogen Production by Partial Oxidation of Methanol
over ZnO-Promoted Au/Al2
O3
Catalysts, Journal of Molecular Catalysis, 129-135, 2007.
[54] Stutz, M.J., Poulikakos D., Optimum Washcoat thickness of a Monolith Reactor for
Syngas Production by Partial Oxidation of Methane-2, Chemical Engineering Science, 63,
7, 1761-1770, 2008.
[55] Pennemann, H., Hessel, V., Kolb, G., Löve, H., Zapf, R., Partial Oxidation of Propane
Using Micro Structured Reactors, Chemical Engineering Journal, 135, 1, S66-S73, 2008.
[56] Yin, X., Hong, L., Liu, Z., Integrating Air Separation With Partial Oxidation of Methane-
A Novel Configuration of Asymmetric Tubular Ceramic Membrane Reactor, Journal of
Membrane Science, 311, 1-2, 89-97, 2008.
[57] Indarto, A., Yang, D.R., Palgunadi, J., Choi, J., Lee, H., Song, H.K., Partial Oxidation of
Methane with Cu-Zn-Al Catalyst in a Dielectric Barrier Discharge, Chemical Engineering
and Processing Intensification, 47, 5, 780-786, 2008.
[58] Wang, Q., Sun, W., Jin, G., Wang, Y., Guo, X., Biomorphic SIC Pellets as Catalyst
Support for Partial Oxidation of Methane to Syngas, Applied Catalysis B:
Environmental, 79, 4, 307-312, 2008.
[59] Mortola, V.B., Ruiz, J.A.C., Mattos, L.V., Noronha, F.B., Hori, C.E., Partial Oxidation of
Methane Using Pt/CeZrO2
/Al2
O3
Catalyst—Effect of the Thermal Treatment of the
Support, Catalysis Today, In Press, Corrected Proof, Available online 31 January 2008.
[60] Boyacı S. F. G., Özdemir S.I S., Örs N., Kalafatoğlu E., Bahar T., Hidrojen Yakıt Pilleri:
Otomotiv Endüstrisindeki Uygulamalar ve Geleceği, TUBİTAK, Marmara Araştırma Merkezi,
Malzeme ve Kimya Teknolojileri Araştırma Enstitüsü, Rapor No: KM 367, 2001.
[61] Hang, BF, Optimization of Autothermal Reactor for Maximum Hydrogen Production,
International Journal of Hydrogen Energy,28, 1369-77, 2003.
[62] Chan S.H., Wang H.M., Effect of Natural Gas Composition on Autothermal Fuel
Reforming Products, Fuel Processing Technology, 64, 221-239, 2000.
[63] Chan S.H.,Wang H.M., Carbonmonoxide Yield in Natural Gas Autothermal Reforming
Process, Journal of Power Sources, 101, 188-195, 2001.
[64] Semelsberger, TA, Brown, LF, Borup RL, Inbody MA, Equilibrium Products from
Autothermal Processes for Generating Hydrogen-rich Fuel-cell Feeds, International
Journal of Hydrogen Energy, 29, 1047-1064, 2004.
[65] Akande, A., Abudheir, R., Idem, R., Dalai, A., Kinetic Modelling of Hydrogen Production
by the Catalytic Reforming of Crude Ethanol Over a Co-Precipitated Ni-Al2
O3 Catalyst in
a Packed Bed Tubular Reactor, International Journal of Hydrogen Energy, 31, 1707-
1715, 2006.
[66] Robbins, P.A., Zhu, H., Jackson, G.S., Transient Modeling of Combined Catalytic
Combustion/CH4
Steam Reforming, Catalysis Today, 83, 141, 2003.
[67] Beckhaus, P., Heinzel, A., Mathiak, J., Roes J., Dynamics of H2
Production by Steam
Reforming, Journal of Power Sources, 127, 294, 2004.
[68] Springmann, S., Bohnet, M., Docter, A., Lamm, A., Eigenberger, G., Cold Start
Simulation of a Gasoline Based Fuel Processor for Mobile Fuel Cell Applications,
Journal of Power Sources, 128, 13, 2004.
[69] Ersoz A., Olgun H., Ozdogan S., Gungor C., Akgun F., Tırıs M., Autothermal
Reforming as a Hydrocarbon Fuel Processing Option for PEM Fuel Cell, Journal of
Power Sources, 384-392, 2003.
[70] Huang C., T-Raissi A., Thermodynamic Analysis of Hydrogen Production from Sub-
Quality Natural Gas, Journal of Power Sources, 163, 2, 630-636, 2007.
[71] Komachiya M., Hiyama K., Higashiyama K., Okano O., Yatabe H., Imada N., Kaku
H., An Approach to Simple Reaction Control for Auto-Thermal Fuel Reforming
Systems, Fuel Cells, 4, 4, 344-351, 2004.
[72] Wei F., Tan T., Exploration of Hydrogen Production in a Membran Reformer, AIChE
Journal, 52, 6, 2260-2270, 2006.
[73] Chan, S.H., Hoang, D.L., Ding, O.L., Transient Performance of an Aututhermal
Reformer A 2 D Modeling Approach, International Journal of Heat Mass Transfer, 48,
19-20, 4205-4214, 2005.
[74] Hoang, D.L., Chan, S.H., Ding, O.L., Kinetic Modelling of Partial Oxidation of
Methane in an Oxygen Permeable Membrane Reactor, International Journal of Chemical
Engineering, 83, 1-10, 2005.
[75] Ding O.L., Chan S.H., Autothermal Reforming of Methane Gas—Modelling and
Experimental Validation, International Journal of Hydrogen Energy, In Press, Corrected
Proof, 2007.
[76] Gaudernack B., Lynum S., Hydrogen from Natural Gas Without Release of CO2
to the
Atmosphere, International Journal of Hydrogen Energy, 23, 12, 1087-1093, 1998.
[77] Fulcheri L., Probst N., Flamant G., Fabry F., Grivei E., Bourrat X., Plasma Processing a
Step Towards the Production of New Grades of Carbon Black, Carbon, 40, 169-176, 2002
[78] Suelves I., Lázaro M.J., Pinilla J.L., Pinilla H., Hydrogen Production by Methane
Decarbonization: Carbonaceous Catalysts,International Journal of Hydrogen Energy, 32,
15, 3320-3326, 2007.
[79] Kinosshita K., Caifns E.J., Fuel Cells, In Kirk-Othmer Encyclopedia of Chemical
Technology, 4th Ed.; Howe-Grant, M., Ed; John Wiley & Sons: New York, 1995,
11,1098-1121.
[80] Kordesch, K., Simader, G., Fuel Cells and Their Applications, Wiley-VCH, ISBN 3-527-
28579-2,1996.
[81] Konieczny A.K., Wiltowski T., Dydo P., Catalyst Development for Thermocatalytic
Decomposition of Methane to Hydrogen, International Journal of Hydrogen Energy, In
Press, Corrected Proof, Available Online 24 October 2007.
[82] Muradov N., Catalysis of Methane Decomposition Over Elemental Carbon, Catalysis
Communications, 2, 3, 89-94, 2001.
[83] Jaimee K., Dahl A.,Weimer W., William B. K., Sensitivy Analysis of the Rapid
Decomposition of Methane in an Areosol Flow Reactor, International Journal of
Hydrogen Energy, 29, 1, 57-65, 2004.
[84] Dahl, J., Buechler K., Finley R., Stanislaus T., Weimer A., Lewandowski A., Rapid
Solar-Thermal Dissociation of Natural Gas in an Aerosol Flow Reactor, Energy, 29,
715-725, 2004.
[85] Muradov N., Smith C., Huang C., T-Raisi A., Autothermal Catalytic Pyrolysis of
Methane as a New Route to Hydrogen Production with Reduced CO2
Emissions,
Catalysis Today, 116, 3, 281-288, 2006.
[86] Barreto L., Makihira A., Riahi K., The Hydrogen Economy in thr 21th Century a
Sustainable Development Scenario, International Journal of Hydrogen Energy, 28,
267-284, 2003.
[87] Hirsch D., Epstein M., Steinfeld A., The Solar Thermal decarbonization of Natural Gas,
International Journal of Hydrogen Energy, 26, 1023-1033, 2001.
[88] Abanades S., Abanades G., Hydrogen Production from Solar Thermal Dissociation of
Methane in a High-Temperature Fluid-Wall Chemical Reactor, Chemical Engineering
and Processing: Process Intensification, 47, 3, 490-498, 2008.

Thank you for copying data from http://www.arastirmax.com