[1] Dinçer, I., Rosen MA, Energy, Environment and Sustainable Development, Applied
Energy, 64, 427-440, 1999.
[2] Dinçer, I., Renewable Energy and Sustainable Development a Crucial Review, Renewable
and Sustainable Energy Reviews, 4, 157-175, 2000.
[3] McMullan, JT, Refrigeration and the Environment, WEL’2000, 3-11, S.Arabia, 2000.
[4] Chalk S.G., Milliken, J., Venkateswaran S., The US Department of Energy-investing in
Clean Transport, Journal of Power Science, 71, 1-2, 26-35, 1998.
[5] Chalk S.G., Miller J.F., Wagner F.W., Challenges for Fuel Cells in Transport
Applications, Journal of Power Sources, 86, 40-51, 2000.
[6] Shukla K., Christensen P.A., Dickinson A.J., Hamnett, A., A Liquid-Feed Solid Polymer
Electrolyte Direct Methanol Fuel Cell Operating at Near-Ambient Conditions,
Journal of Power Sources, 76, 1, 54-59, 1998.
[7] Elektrik İşleri Etüt İdaresi Genel Müdürlüğü (2008)
www.eie.gov.tr/hidrojen/hidrojen enerjisi.html [erişim tarihi: 28.03.2008]
[8] Anonymous, Bmft, Renewable Energy, Germany, 1992.
[9] Regar,K.N., Pehr,K., Der neue BMW 735L mit Wasserstoffantrieb In VDI Berichte
Nr.725, Wasserstoff-Energietechnik II, 187-196, 1989.
[10] Herdin,G., Wasserstoff als Antriebenergie für konventionelle Ottomotoren, wasserstoff
Expo, Jenbacher AG, Hamburg, 2001.
[11] Pehr, K., Burckhard, S., Mit Wasserstoff in die Zukunft-Der BMW 750hl, In
Vorbereitung für ATZ, 2002.
[12] Geitmann, S., Wasserstoff und Brennstoffzellen ,:67-79, Berlin, 2001.
[13] Scheuerer, K., Energietaeger Wasserstoff, Wasserstoffmotor und Brennstoffzellen, BMW
Group, 2004.
[14] Bauen, H., Assesment of the Enviromental Benefits of Transport and Stationary Fuel Cell,
Journal of Power Sources, 86, 482-494, 2000
[15] Brown L. F., A Comperative Study of Fuels for on-board Hydrogen Production for
Fuel-Cell-Powered Automobiles, International Journal of Hydrogen Energy, 26, 381-397,
2001.
[16] Awan, T., The European Fuel Cell Market for Vehicles, Components and Fuel Retailing
Report code: 3972, 2001.
[17] Hart, D., Sustainable Energy Conversion: Fuel Cells- the Competitive Option?, Journal
of Power Sources, 86, 23-27, 2000.
[18] FreedomCAR Partnership Plan, ABD Enerji Bakanlığı, 2002.
[19] National Hydrogen Energy Roadmap, ABD Enerji Bakanlığı, 2002.
[20] Fuel Cell Report to Congress, 2003.
[21] Calculating hydrogen production costs, EV World: The World of Electric, Hybrid & Fuel
Cell Vehicles, 2003.
[22] Walsh, B., Portable Fuel Cell Transportation Regulations, Fuel Cell Catalyst, 4, 4, 2,
2004.
[23] Muradov, NZ, CO2
-free Production of Hydrogen by Catalytic Pyrolysis of Hydrocarbon
Fuel, Energy and Fuels, 12, 1, 41-48, 1998.
[24] Guhencin A.F., Review of Fuel Processing Catalyst for Hydrogen Production in PEM
Fuel Cell Systems, Current Opinion in Solid State Mat. Science, Vol.16, Issue.5,
389-399, 2002.
[25] Momirlan M., Veziroğlu T.N., Current Status of Hydrogen Energy, Renewable and
Sustainable Energy Reviews, 6, 141-179, 2002.
[26] Koku H., Eroğlu İ, Gündüz U., Yücel M., Türker L., Kinetics of Biological Hydrogen
Production by the Photosynthetic Bacterium Rhodobacter Sphaeroides O.U.001., Int.J.
Hydrohen Energy, 28, 381-388, 2003.
[27] Koku H., Eroğlu İ, Gündüz U., Yücel M., Türker L., Aspects of the Metabolism of
Hydrogen Production by Rhodobacter Sphaeroides, Int.J. Hydrogen Energy, 27,
1315-1329, 2002.
[28] Simbeck, DR, Hydrogen Costs with CO2 Capture, 7th International Conference on
Greenhouse Gas Control Technologies, GHGT-7, Vancover, Canada, 2004.
[29] Sanıgök Ü., Anorganik Endüstriyel Kimya, İ.Ü. Müh. Fak. Kimya Müh. Böl., İ..Ü.
Yayınları, İstanbul, 1987.
[30] Rosen, MA., Thermodynamics Investigation of Hydrogen Production by Steam- Methane
Reformation, International Journal of Hydrogen Energy,16, 3, 207-217, 1991.
[31] Muradov N., Thermocatalytıc C02
-Free Productıon of Hydrogen From Hydrocarbon
Fuels, Proceedings of the 2000 DOE Hydrogen Program Review, 1, NREL/CP-50-
28890, 2000.
[32] Adhikari, S., Fernando S., Hydrogen Membrane Seperation Techniques, Ind.Eng. Chem.
Res.45, 875-881, 2006.
[33] Piel A., Hirt, M., Steigies C.T., Plasma Diagnostics with a Langnuir Probes in the
Equatorial Ionospere, Journal of Physics D: App. Phy., 34, 7, 3643-3649, 2001.
[34] Kikuchi E., Membrane Reactor Application to Hydrogen Production, Catalysis Today, 56,
97-101, 2000.
[35] Tong J., Matsumura Y., Pure Hydrogen Production by Methane Steam Reforming with
Hydrogen-Permeable Membrane Reactor, Catalysis Today, 111, 147-152, 2006.
[36] Simpson A.P., Lutz A.E., Exergy Analysis of Hydrogen Production via Steam Methane
Reforming, International Journal of Hydrogen Energy, 32,18, 4811-4820, 2007.
[37] Deminsky, M., Jivotov, V., Potapkin, B., Rusanov, V., Plasma-assisted Production of
Hydrogen From Hydrocarbons, Pure Appl. Cem., 74, 3, 413-418, 2002.
[38] Ghorbanzadeh AM, Norouzi S., Mohammadi T., High Energy Efficiency in Syngas and
Hydrocarbon Production from Dissociation of CH4 – CO2
Mixture in a Non-equlibrium
Pulsed Plasma, J. Phys.D: Appl. Phys., 38, 3804-3811, 2005.
[39] Sarmiento B., Brey J.J., Viera I.G., González-Elipe A.R., Rico V.J., Hydrogen Production
by Reforming of Hydrocarbons and Alcohols in a Dielectric Barrier Discharge, Journal of
Power Sources, 169, 1, 140-143, 2007.
[40] Lutz A., Bradshaw R., Keller, J., Witmer, D., Thermodynamic Analysis of Hydrogen
Production by Steam Reforming, International Journal of Hydrogen Energy, 28, 159-
167, 2003.
[41] Gallucci F., Paturzo L., Basile A., A Simulation Study of the Steam Reforming of
Methane in a Dense Tubular Membrane Reactor, International Journal of Hydrogen
Energy, 29, 6, 611-617, 2004.
[42] Wait, MF, R&D of a PEM Fuel Cell, Hydrogen Reformer and Vehicle Refueling Facility,
Hydrogen and Fuel Cell Merit Review Meeting, Washington DC, 2005.
[43] Ahmed S., Krumpelt M., Hydrogen from Hydrocarbon Fuels for Fuel Cells,
International Journal of Hydrogen Energy, 26, 291-301, 2001.
[44] Balasubramanian B., Ortiz A.L., Kaytakoğlu S., Harisson D.P., Hydrogen from
Methane in a Single-Step Process, Chemical Engineering Science, 54, 3543-3552,1999.
[45] Okada O., Yokoyama K., Development of Polymer Electrolyte Fuel Cell Cogeneration
Systems for Residential Applications, Fuel Cells, 1, 1, 72-77, 2001.
[46] Britz P., Zartenar N., PEM-Fuel Cell System for Residential Applications, Fuel Cells, 4,
269 – 275, 2004.
[47] Choi Y., Stenger H., Water Gas Shift Reaction Kinetics and Reactor Modeling for Fuel
Cell Grade Hydrogen, Journal of Power Sources, 124, 432-439, 2003.
[48] Nielsen M.P., Modelling a Steam Reformer for a Fuel Cell System, Published
Internally at Aalborg University in ‘Ph.D. Papers in Technology and Science’, 2002.
[49] Chen Z., YanY., Elnashaie S.E.H., Modeling and Optimization of Novel
Membrane Reformer for Hydrocarbons, AIChE Journal, 49, 5,1250-1265, 2003.
[50] Chen Z., YanY., Elnashaie S.E.H., Optimization of Reforming Parameter and
Configiration for Hydrogen Production, AIChE Journal, 51, 5, 1467-1481, 2005.
[51] Ouni F., Khacef A., Cormier J.M., Effect of Oxygen on Methane Steam Reforming in a
Sliding Discharge Reactor, Chemical Eng. Tech., 29, 5, 604-609, 2006.
[52] Stutz, M.J., Poulikakos D., Optimum Washcoat thickness of a Monolith Reactor for
Syngas Production by Partial Oxidation of Methane-1, Chemical Engineering Science,
4027-4040, 2006.
[53] Chang, FW, Lai, SC, Roselin, S., Hydrogen Production by Partial Oxidation of Methanol
over ZnO-Promoted Au/Al2
O3
Catalysts, Journal of Molecular Catalysis, 129-135, 2007.
[54] Stutz, M.J., Poulikakos D., Optimum Washcoat thickness of a Monolith Reactor for
Syngas Production by Partial Oxidation of Methane-2, Chemical Engineering Science, 63,
7, 1761-1770, 2008.
[55] Pennemann, H., Hessel, V., Kolb, G., Löve, H., Zapf, R., Partial Oxidation of Propane
Using Micro Structured Reactors, Chemical Engineering Journal, 135, 1, S66-S73, 2008.
[56] Yin, X., Hong, L., Liu, Z., Integrating Air Separation With Partial Oxidation of Methane-
A Novel Configuration of Asymmetric Tubular Ceramic Membrane Reactor, Journal of
Membrane Science, 311, 1-2, 89-97, 2008.
[57] Indarto, A., Yang, D.R., Palgunadi, J., Choi, J., Lee, H., Song, H.K., Partial Oxidation of
Methane with Cu-Zn-Al Catalyst in a Dielectric Barrier Discharge, Chemical Engineering
and Processing Intensification, 47, 5, 780-786, 2008.
[58] Wang, Q., Sun, W., Jin, G., Wang, Y., Guo, X., Biomorphic SIC Pellets as Catalyst
Support for Partial Oxidation of Methane to Syngas, Applied Catalysis B:
Environmental, 79, 4, 307-312, 2008.
[59] Mortola, V.B., Ruiz, J.A.C., Mattos, L.V., Noronha, F.B., Hori, C.E., Partial Oxidation of
Methane Using Pt/CeZrO2
/Al2
O3
Catalyst—Effect of the Thermal Treatment of the
Support, Catalysis Today, In Press, Corrected Proof, Available online 31 January 2008.
[60] Boyacı S. F. G., Özdemir S.I S., Örs N., Kalafatoğlu E., Bahar T., Hidrojen Yakıt Pilleri:
Otomotiv Endüstrisindeki Uygulamalar ve Geleceği, TUBİTAK, Marmara Araştırma Merkezi,
Malzeme ve Kimya Teknolojileri Araştırma Enstitüsü, Rapor No: KM 367, 2001.
[61] Hang, BF, Optimization of Autothermal Reactor for Maximum Hydrogen Production,
International Journal of Hydrogen Energy,28, 1369-77, 2003.
[62] Chan S.H., Wang H.M., Effect of Natural Gas Composition on Autothermal Fuel
Reforming Products, Fuel Processing Technology, 64, 221-239, 2000.
[63] Chan S.H.,Wang H.M., Carbonmonoxide Yield in Natural Gas Autothermal Reforming
Process, Journal of Power Sources, 101, 188-195, 2001.
[64] Semelsberger, TA, Brown, LF, Borup RL, Inbody MA, Equilibrium Products from
Autothermal Processes for Generating Hydrogen-rich Fuel-cell Feeds, International
Journal of Hydrogen Energy, 29, 1047-1064, 2004.
[65] Akande, A., Abudheir, R., Idem, R., Dalai, A., Kinetic Modelling of Hydrogen Production
by the Catalytic Reforming of Crude Ethanol Over a Co-Precipitated Ni-Al2
O3 Catalyst in
a Packed Bed Tubular Reactor, International Journal of Hydrogen Energy, 31, 1707-
1715, 2006.
[66] Robbins, P.A., Zhu, H., Jackson, G.S., Transient Modeling of Combined Catalytic
Combustion/CH4
Steam Reforming, Catalysis Today, 83, 141, 2003.
[67] Beckhaus, P., Heinzel, A., Mathiak, J., Roes J., Dynamics of H2
Production by Steam
Reforming, Journal of Power Sources, 127, 294, 2004.
[68] Springmann, S., Bohnet, M., Docter, A., Lamm, A., Eigenberger, G., Cold Start
Simulation of a Gasoline Based Fuel Processor for Mobile Fuel Cell Applications,
Journal of Power Sources, 128, 13, 2004.
[69] Ersoz A., Olgun H., Ozdogan S., Gungor C., Akgun F., Tırıs M., Autothermal
Reforming as a Hydrocarbon Fuel Processing Option for PEM Fuel Cell, Journal of
Power Sources, 384-392, 2003.
[70] Huang C., T-Raissi A., Thermodynamic Analysis of Hydrogen Production from Sub-
Quality Natural Gas, Journal of Power Sources, 163, 2, 630-636, 2007.
[71] Komachiya M., Hiyama K., Higashiyama K., Okano O., Yatabe H., Imada N., Kaku
H., An Approach to Simple Reaction Control for Auto-Thermal Fuel Reforming
Systems, Fuel Cells, 4, 4, 344-351, 2004.
[72] Wei F., Tan T., Exploration of Hydrogen Production in a Membran Reformer, AIChE
Journal, 52, 6, 2260-2270, 2006.
[73] Chan, S.H., Hoang, D.L., Ding, O.L., Transient Performance of an Aututhermal
Reformer A 2 D Modeling Approach, International Journal of Heat Mass Transfer, 48,
19-20, 4205-4214, 2005.
[74] Hoang, D.L., Chan, S.H., Ding, O.L., Kinetic Modelling of Partial Oxidation of
Methane in an Oxygen Permeable Membrane Reactor, International Journal of Chemical
Engineering, 83, 1-10, 2005.
[75] Ding O.L., Chan S.H., Autothermal Reforming of Methane Gas—Modelling and
Experimental Validation, International Journal of Hydrogen Energy, In Press, Corrected
Proof, 2007.
[76] Gaudernack B., Lynum S., Hydrogen from Natural Gas Without Release of CO2
to the
Atmosphere, International Journal of Hydrogen Energy, 23, 12, 1087-1093, 1998.
[77] Fulcheri L., Probst N., Flamant G., Fabry F., Grivei E., Bourrat X., Plasma Processing a
Step Towards the Production of New Grades of Carbon Black, Carbon, 40, 169-176, 2002
[78] Suelves I., Lázaro M.J., Pinilla J.L., Pinilla H., Hydrogen Production by Methane
Decarbonization: Carbonaceous Catalysts,International Journal of Hydrogen Energy, 32,
15, 3320-3326, 2007.
[79] Kinosshita K., Caifns E.J., Fuel Cells, In Kirk-Othmer Encyclopedia of Chemical
Technology, 4th Ed.; Howe-Grant, M., Ed; John Wiley & Sons: New York, 1995,
11,1098-1121.
[80] Kordesch, K., Simader, G., Fuel Cells and Their Applications, Wiley-VCH, ISBN 3-527-
28579-2,1996.
[81] Konieczny A.K., Wiltowski T., Dydo P., Catalyst Development for Thermocatalytic
Decomposition of Methane to Hydrogen, International Journal of Hydrogen Energy, In
Press, Corrected Proof, Available Online 24 October 2007.
[82] Muradov N., Catalysis of Methane Decomposition Over Elemental Carbon, Catalysis
Communications, 2, 3, 89-94, 2001.
[83] Jaimee K., Dahl A.,Weimer W., William B. K., Sensitivy Analysis of the Rapid
Decomposition of Methane in an Areosol Flow Reactor, International Journal of
Hydrogen Energy, 29, 1, 57-65, 2004.
[84] Dahl, J., Buechler K., Finley R., Stanislaus T., Weimer A., Lewandowski A., Rapid
Solar-Thermal Dissociation of Natural Gas in an Aerosol Flow Reactor, Energy, 29,
715-725, 2004.
[85] Muradov N., Smith C., Huang C., T-Raisi A., Autothermal Catalytic Pyrolysis of
Methane as a New Route to Hydrogen Production with Reduced CO2
Emissions,
Catalysis Today, 116, 3, 281-288, 2006.
[86] Barreto L., Makihira A., Riahi K., The Hydrogen Economy in thr 21th Century a
Sustainable Development Scenario, International Journal of Hydrogen Energy, 28,
267-284, 2003.
[87] Hirsch D., Epstein M., Steinfeld A., The Solar Thermal decarbonization of Natural Gas,
International Journal of Hydrogen Energy, 26, 1023-1033, 2001.
[88] Abanades S., Abanades G., Hydrogen Production from Solar Thermal Dissociation of
Methane in a High-Temperature Fluid-Wall Chemical Reactor, Chemical Engineering
and Processing: Process Intensification, 47, 3, 490-498, 2008.
Thank you for copying data from http://www.arastirmax.com