You are here

VERİ MADENCİLİĞİ TEKNİKLERİ İLE BİR KOZMETİK MARKANIN AYRILAN MÜŞTERİ ANALİZİ VE MÜŞTERİ BÖLÜMLENMESİ

CHURN ANALYSIS AND CUSTOMER SEGMENTATION OF A COSMETICS BRAND USING DATA MINING TECHNIQUES

Journal Name:

Publication Year:

Abstract (2. Language): 
Data minig is the process of finding hidden and unknown patterns in huge amounts of data. Data mining has a wide application area such as marketing, banking and finance, medicine and manufacturing. Churn analysis and customer segmentation are two common application areas of data mining . Churn modeling is predicting which customers will leave the company. This allows companies to increase customer loyalty by producing special campaigns. Customer segmentation is the process of dividing customers into mutually exclusive groups. Segmenting customers enables companies to develop customized marketing programs for them. This study aims to determine the customer profile who likely to leave and the customer segments of a cosmetic brand and develop customized campaigns and marketing strategies. Clustering techniques used for segmentation and classification techniques used for determining the churners.
Abstract (Original Language): 
Veri madenciliği, büyük veri kümeleri içindeki anlamlı bilgiyi ortaya çıkarma sürecidir. Veri madenciliğinin en yaygın kullanıldığı uygulama alanlarından biri, ayrılma eğilimi gösteren müşteri kesitini belirleme ve müşteri bölümlenmesidir. Ayrılma eğilimi gösteren müşteri kesitini belirleme, şirketlerin bu müşterilere özel pazarlama kampanyalarını geliştirmelerini sağlamaya yöneliktir. Müşteri bölümlenmesi ise benzer özellikler gösteren müşterileri gruplandırarak; gruplara özel, pazarlama programlarının geliştirilmesini sağlar. Yapılan çalışma, bir kozmetik markasının müşteri gruplarını ve ayrılma eğilimi gösteren müşteri kesitini belirleyerek; bu müşterilere özel pazarlama stratejileri geliştirilmesini hedeflemektedir. Bölümlenme için kümeleme teknikleri, ayrılacak müşteri kesitini belirlemek için sınıflama teknikleri kullanılmıştır.
FULL TEXT (PDF): 
43-57

REFERENCES

References: 

[1] Hudairy H., “Data Mining and Decision Making Support In The Governmental Sector”,
Master Thesis, Louisville University, 2004.
[2] Han J., Kamber M., “Data Mining Concepts and Techniques”, Morgan Kaufmann
Publishers, U.S.A, 2001.
[3] Jacobs P., “Data Mining: What General Managers Need to Know”, Harvard Management
Update, Cilt 4, No 10, 8, 1999.
[4] Akpınar H., “Veritabanlarında Bilgi Keşfi ve Veri Madenciliği”, İÜ İşletme Fakültesi
Dergisi, Cilt 29, 1-22, 2000.
[5] Rud O., “Data Mining Cookbook: Modelling Data for Marketing, Risk and Customer
Relationship Management”, John Wiley & Sons, Canada, U.S.A, 2001
[6] Berry M, Linoff G., “Data Mining Techniques For Marketing, Sales And Customer
Support”, John Wiley & Sons , New Jersey, U.S.A, 1997.
[7] Rygielski C., Wang J., Yen D., “Data Mining Techniques for Customer Relationship
Management”, Technology in Society, 24:483-502, 2002.
[8] Hwang H., Jung T., Suh E., “An LTV model And Customer Segmentation Based On
Customer Value: A Case Study On The Wireless Telecommunication İndustry”, Expert
System with Application, 26: 181-188, 2004.
[9] Kotler P., Armstrong G., Principles of Marketing, Prentice Hall, New Jersey, U.S.A,
2001.
[10] Massey P., Mitzi M., “ Reengineering CRM: Leveraging Knowledge Assets In IBM”,
Decision Support Systems, Cilt 32, No 2, 155-170, 2001.
[11] Nath V., Data Warehousing And Mining In The Wireless Industry, Master Thesis, Florida
Atlantic University, 2003.
[12] Jonker J., Piersma N., Poel D.,”Joint Optimization Of Customer Segmentation And
Marketing Policy To Maximize Long Term Profitability”, Working Paper of Faculty of
Economics and Business Administration Ghent University, Cilt 3, 214-239, 2003.
[13] Mucuk İ., Pazarlama İlkeleri, Türkmen Kitabevi, İstanbul, 233-255, 2004.
[14] Allen C., Chatwin S., Creary C.A., Introduction to Relational Databases and SQL
Programming, USA, 2004.
[15] Witten I., Frank E., Data Mining: Practical Machine Learning Tools And Techniques
With Java İmplementations, Morgan Kaufmann Publishers, USA, 267-277, 2000.
[16] İnternet: K Means Clustering in WEKA,
http://maya.cs.depaul.edu/~Classes/Ect584/Weka/k-means.html, 2006.

Thank you for copying data from http://www.arastirmax.com