You are here

Hanta-virüs Modelinden Elde Edilen Lojistik Diferansiyel Denklem

Logistic Differential Equations Obtained from Hanta-virus Model

Journal Name:

Publication Year:

Abstract (2. Language): 
Fractional-order Hanta-virüs Model as received nonlinear differential equation system is cDsxt) = (b_ c)x(t) + b Y(t) —Kr _ \nr~) x(tw) Y2(t) (l_aK\ _ (1) cDStY(t) = - cY(t) ±L-[——)x(t)Y(t) Here, cD"t denotes the fractional derivative (Caputo) operator. The Griinwald-Letnikov operator and Nonstandart Finite Diference (SOSF) schemes will be applied to discretize the fractional-order nonlinear system (1). Fractional order logistic equation optioned with some adjustments in (1) system. The findings will be supported with the help of some of the graphs and tables.
Abstract (Original Language): 
Kesirli mertebeden Hanta-virüs modeli olarak alınan lineer olmayan diferansiyel denklem sistemi cD£tX(t) = (b- c)X(t) + bY(t) Ki _ (__) X(t)Y(t) Y2(t) (l_aK\ _ (1) cDStY(t) = - cY(t) ±L-(——)x(t)Y(t) şeklinde tanımlanmıştır. Burada cD"t kesirli türev (Caputo) operatörünü göstermektedir. (1) sistemini aynklaştırmak için Grünwald-Letnikov türev operatörü ve Standart Olmayan Sonlu Farklar (SOSF) Yöntemi uygulanacaktır. (1) sistemindeki bazı düzenlemeler ile kesirli mertebeden Lojistik denklem elde edilip, bulgular bazı grafikler ve tablolar yardımı ile desteklenecektir.
82
91

REFERENCES

References: 

[1] Abramson G., Kenkre V.M., 2002. Spatio-temporal patterns in the Hantavirus infected, Physcial Rewiew E, 66, 011912.
[2] Mickens,R.E., 2007. Calculation of denominator functions for nonstandart finite difference schemes for differential equations satisfying a positivity condition, Numerical Methods for Partial Differential Equations, 23 (3) : 672-691.
[3] Chen M., Clemence D.P.,2006. Stability properties of a nonstandard finite difference scheme for a hantavirus epidemic model, Journal of Difference Equations and Applications, 12 (12), 1243¬1256.
[4] Chen M., Clemence D.P., 2007. Analysis of and numerical schemes for a mouse population model
in Hantavirus epidemics, Journal of Difference Equations and Applications, 12 (9), 887-899. [5] Abdullah F.A.,2011, Simulations of the spread of the Hantavirus using fractional differential
equations, Matematika, 27, 149-158 [6] Matignon D.,1996, Stability results for fractional differential equations with applications to control
processing. Computational Engineering in Systems Applications, 2: 817-823. [7] Lubich CH.,1986. Discretized Fractional Calculus, SIAM Journal on Mathematical Analysis (SIMA)
17 (3): 704-719.
90
Z. G.
Kar
adem ve M. Yakıt Ongun
[8] Podlubny I., 1999. Fractional Differential Equations. An Introduction to Fractional Derivatives,
Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press, San Diego-Boston-New York-London-Tokyo-Toronto, p.368.

Thank you for copying data from http://www.arastirmax.com