You are here

LiH Reaktör Moderator Malzemesi İçin Hadronik Etkileşimlerin Geant4 Benzetimi

Geant4 Simulatio n of Hadronic Interactions for the Reactor Moderator Material LiH

Journal Name:

Publication Year:

Abstract (2. Language): 
LiH is one of the most common moderator materials for neutron moderation; due to its high density, high neutron capture cross section and physical-chemical properties that provides usage at elevated temperatures. Hadronic interactions of low energetic neutrons and generated isotopes-particles have been investigated for a situation in which LiH was used as a neutron moderator by using GEANT4, which is a powerful simulation software. In addition, energy deposition along LiH material has been calculated at low neutron flux
Abstract (Original Language): 
LiH; yoğunluğu, yüksek nötron yakalama tesir kesiti ve yüksek sıcaklıklarda kullanılmasına imkân veren fiziksel-kimyasal özellikleri sayesinde nötron moderasyonunda oldukça yaygın kullanılan bir moderatör malzemedir. Güçlü bir benzetim programı olan GEANT4 ile LiH'in nötron moderatörü olarak kullanıldığı bir ortam için düşük enerjili nötronların ve üretilen izotop-parçacıkların hadronik etkileri araştırılmıştır. Ek olarak, LiH malzemesi için düşük nötron akısında, enerji birikimi hesaplanmıştır
82
88

REFERENCES

References: 

[1]
Doğa
n S. S., Çapalı V., Özdoğan H., Kaplan A., 2014. Eriyik Tuz Reaktörlerinde Yakıt Malzemesi Olarak Kullanılan Na Çekirdeğinin Üretim Tesir Kesiti Hesaplamaları, Süleyman Demirel University Journal of Science (e-journal), 9(2): 100-106.
87
ÜFD SDU Journal of Science
(E-Journal),
2016,11 (2): 82-88
FENÖ
DERGISIHJ
[2] Tel E., 2010. Study on Some Structural Fusion Materials for (n,p) Reactions up to 30 MeV Energy, Journal of Fusion Energy, 29(4): 332-336.
[3] Aydın A., 2010. Pre-Equilibrium 3He-Emission Spectra at 62 MeV Proton Incident Energy, Journal of Fusion Energy, 29(5): 476-480.
[4] Sarpün İ.H., 2015. Double Differential Alpha, Proton and Deuteron Emission Cross Section Calculations for the Structural Fusion Materials 46,48Ti,Journal of Fusion Energy, 34(3): 592¬597.
[5] Demir B., Sarpün İ.H., Kaplan A., Çapalı V., Aydın A., Tel E., 2015. Double Differential Cross
Section and Stopping Power Calculations of Light Charged Particle Emission for the Structural
Fusion Materials 50,52Cr, Journal of Fusion Energy, 34(4): 808-816. [6] Tel E., Aydın A., 2012. Investigation of Lead Target Nuclei Used on Accelerator-Driven Systems for
Tritium Production, Journal of Fusion Energy, 31(1): 73-78. [7] Özdoğan H., Çapalı V., Kaplan A., 2015. Reaction Cross-Section, Stopping Power and Penetrating
Distance Calculations for the Structural Fusion Material 54Fe in Different Reactions, Journal of
Fusion Energy, 34(2): 379-385.
[8]
Saha
n M., Tel E., Sahan A., Kara A., Aydin A., Kaplan A., Sarpün İ. H., Demir B., Akca S., Yildiz E., 2014. Calculations of Double-Differential Neutron Emission Cross Sections for 9Be Target Nucleus at 14.2 MeV Neutron Energy, Journal of Fusion Energy, 34(3): 493-499.
[9] Sarpün İ. H., Aydın A., Kaplan A., Koca H., Tel E., 2014. Comparison of Fission Barrier and Level Density Models in (a,f) Reactions of Some Heavy Nuclei,Annals of Nuclear Energy, 70: 175¬179.
[10] Kaplan A., Sarpün İ.H., Aydin A., Tel E., Çapalı V., Özdoğan H., 2015. (g,2n) Reaction Cross
Section Calculations of Several Even-Even Lanthanide Nuclei Using Different Level Density
Models, Physics of Atomic Nuclei, 78(1): 53-64. [11] Mocko M., Daemen L. L., Harlt M. A., Huegle T., Muhrer G., 2010. Experimental study of potential
neutron moderator materials, Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment,624(1): 173-179. [12] Shpil'rain E.E., Yakimovich K.A., Medl'nikova T.N., Polishchuk A.Y., 1987. Thermophysical
Properties of Lithium Hydride, Deuteride and Tritide and of Their Solutions with Lithium, New
York: American Institute of Physics, USA, p. 213. [13] Metropolis,N., Ulam,S., 1949. The Monte Carlo Method, Journal of the American Statistical
Association, 44(2): 335-341. [14] Agostinelli S; et al. Geant4 Colloboration, 2003. Geant4 - a simulation toolkit,Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 506(3): 250-303. [15] Demir B., Kaplan A., Çapalı V., Özdoğan H., Sarpün İ. H., Aydın A., Tel E., 2015. Neutron
Production Cross-Section and Geant4 Calculations of the Structural Fusion Material 59Co for
(a,xn) and (g,xn) Reactions, Journal of Fusion Energy, 34(3): 636-641. [16] Brun R., Rademakers F., 1997. ROOT: An object oriented data analysis framework, Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, 389(1-2): 81-86. [17] Geant4 Collaboration, "Geant4 User's Guide for Application Developers," 2014.
http://geant4.web.cern.ch/geant4 (Erişim Tarihi: 05/04/2016) [18] Çapalı V., Şekerci M., Özdoğan H., Kaplan A., 2016. Reaction Cross Section Calculations in
Neutron Induced Reactions and GEANT4 Simulation of Hadronic Interactions for the Reactor
Moderator Material BeO, Suleyman Demirel University Journal of Natural and Applied
Sciences, 20 (2): 161-166.

Thank you for copying data from http://www.arastirmax.com