You are here

ÇİNKO VE KADMİYUM METAL İYONLARININ PHASEOLUS VULGARISL. (FABACEAE) KÖK UCU HÜCRELERİ ÜZERİNE SİTOTOKSİK ETKİLERİ

THE CYTOTOXIC EFFECTS OF ZINC AND CADMIUM METAL IONS ON ROOT TIP CELLS OF PHASEOLUS VULGARIS L. (FABACEAE)

Journal Name:

Publication Year:

Abstract (2. Language): 
The present study was designed to evaluate the cytotoxic effects of different concentrations of zinc (Zn) and cadmium (Cd) heavy metal ions on root tip cells of Phaseolus vulgaris L. For this aim, we used the germination percentage, root lenght, weight gain and micronucleus (MN) frequency as indicators of cytotoxicity, and supported these data with statistical analysis. Additionally to the cytogenetic analysis, DNA analyses were performed from root tip meristem of P. vulgaris seeds treated with Zn and Cd. The test material was used the seeds of P. vulgaris.The seeds were divided into three groups: control, Zn and Cd treatment groups. They were treated with two dose levels (30 and 70 ppm) of Zn and Cd during 7 days. The initial and final weights of all seeds were measured by sensitive balance in order to investigate the effect of heavy metal ions on the weight gain of seeds. The results indicated that there was an alteration in the germination percentage, root lenght, weight gain and MN frequency depending on dose in seeds exposed to Zn and Cd ions when compared with control. Both doses of Zn and Cd ions significantly decreased the germination percentage, root lenght and weight gain in seeds all treatment groups. However, MN rate showed an increase. Besides, the investigated all these paremeters (except MN frequency) was higher in seeds exposed to Zn than seeds treated with Cd. In other words, Cd was more a toxic metal than Zn. In conclusion, Zn and Cd metal ions had important cytotoxic effects on P. vulgaris root tip cells and the parameters such as germination percentage, root lenght, weight gain and MN frequency can be used for biomonitoring of these effects.
Abstract (Original Language): 
Bu çalışma Phaseolus vulgaris L. kök ucu hücreleri üzerine çinko (Zn) ve kadmiyum (Cd) ağır metal iyonlarının farklı konsantrasyonlarının sitotoksik etkilerini değerlendirmek için tasarlandı. Bu amaçla, çimlenme yüzdesi, kök uzunluğu, ağırlık kazanımı ve mikronukleus (MN) sıklığını sitotoksikitenin indikatörleri (belirteçleri) olarak kullanıldık ve bu verileri istatistiksel analizler ile gruba ayrıldı. 7 gün süresince Zn ve Cd'nin iki dozu ile muamele edildiler (30 ve 70 ppm). Tohumların ağırlık kazanımları üzerine ağır metal iyonlarının etkilerini araştırmak amacıyla, hassas terazi tarafından tüm tohumların başlangıç ve son ağırlıkları ölçüldü. Sonuçlar gösterdiki, kontrol grubu ile karşılaştırıldığında Zn ve Cd iyonlarına maruz kalan tohumlarda doza bağlı olarak çimlenme yüzdesi, kök uzunluğu, ağırlık kazanımı ve MN sıklığında bir değişim vardı. KULTİGİN Sayfa 2 25.05.2009Zn ve Cd'un her iki dozunda, tüm uygulama grubu tohumlarda çimlenme yüzdesi, kök uzunluğu ve ağırlık kazanımı önemli oranda azaldı. Fakat MN oranı ise bir artış gösterdi. Ayrıca, araştırılan tüm bu parametreler (MN sıklığı hariç) Cd ile muamele edilen tohumlarda Zn ile muamele edilen tohumlara göre daha yüksekti. Diğer bir ifadeyle, kadmiyum (Cd) çinkoya (Zn) göre daha toksik bir metaldi. Sonuç olarak, Zn ve Cd metal iyonları P. vulgaris kök ucu hücrelerinde önemli sitotoksik etkilere sahipti ve çimlenme yüzdesi, kök uzunluğu, ağırlık kazanımı ve MN sıklığı gibi parametreler bu etkilerin izlenmesi için kullanılabilirdi.destekledik. Sitolojik analizlere ilaveten, Zn ve Cd ile muamele edilen P. vulgaris tohumlarının kök ucu meristemlerinden DNA analizleri de gerçekleştirildi. Test materyali olarak P. vulgaris tohumları kullanıldı.. Tohumlar kontrol, Zn ve Cd uygulama grubu olmak üzere üç
1-11

REFERENCES

References: 

ARAVIND P, PRABHJOT MNV, 2005. Cadmium-Zinc interactions in hydroponic system using Ceratophyllum demersum: adaptive plant ecophysiology, biochemistry and molecular toxicology. Brazilian Journal of Plant Physiology, 17 (1), 3-20.
ARUN DS, PRABHJOT KAUR G, PRABHJEET S, 2002. DNA Isolation From Dry
And Fresh Samples of Polysaccharide-Rich Plants. Plant Molecular Biology Reporter, 20, 415-415.
ATIK M, KARAGUZEL O, ERSOY S, 2007. Sıcaklığın Dalbergia sissoo tohumlarının
çimlenme özelliklerine
etkisi
. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 20 (2), 203-210.
AYBEKE M, OLGUN G, 2004. The effect of olive oil mill effluent on the mitotic cell
division and total protein amount of the root tips of Triticum aestivum L. Turkish
Journal of Biology, 24, 127-140.
BAGCI SA, EKIZ H, YILMAZ A, CAKMAK I, 2007. Effects of zinc deficiency and drought on grain yield of field-grown wheat cultivars in central Anatolia. Journal of Agronomy and Crop Science, 193, 198-206. BURTON KW, MORGAN E, ROIG A, 1984. The influence of heavy metals on the growth of sitka-spruce in South wales forests. II green house experiments. Plant Soil, 78, 271-282.
CHANEY RL, RYAN JA, 1994. Risk based standards for arsenic, lead and cadmium
in urban soils. Dechema, Frankfurt, Germany, pp. 130. CHAOUI A, MAZHOUDI S, GHORBAL MH, ELFERJANI E, 1997. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.) Plant Science, 127, 139-147.
DIMITROVA I, IVANOVA E, 2003. Effect of heavy metal soil pollution on some
morphological and cytogenetical characteristuics of flax (Linum usitatissum L.). Journal of Balkan Ecology, 4, 212-218.
FENENCH M, CHANG WP, KIRSCH-VOLDERS M, HOLLAND N, BONASSI S, ZEIGER E, 2003. Human MicronNucleus project. HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutation Research, 534, 65-75. FORSTNER U, 1995. Metal speciation and contamination of soil. Lewis, London, pp.
33.
GODBOLD DL, KETTNER C, 1991. Lead infuluences root growth and mineral
nutrition of Picea abies seedlings. Journal of Plant Physiology, 139, 95-99.
INCEER H, AYAZ S, BEYAZOGLU O, SENTURK E, 2003. Cytogenetic effects of
copper chloride on the root tip cells of Helianthus annuus L. Turkish Journal of
Biology, 27, 43-46.
IVANOVA E, STAIKOVA T, VELCHEVA I, 2005. Cytogenetic testing of heavy metal and cyanide contaminated river waters in a mining region of Southwest Bulgaria. Juornal of Cell and Molecular Biology, 4, 99-104.
IVANOVA E, STAIKOVA T, VELCHEVA I, 2008. Cytotoxicity and genotoxicity of
heavy metal- and cyanide-contaminated waters in some regions for production and processing of ore in Bulgaria. Bulgarian Journal of Agricultural Science, 14
(2), 262-268.
10
SDU JOURNAL OF SCIENCE (E-JOURNAL). 2009, 4 (1) 1-11
JOHNSON MS, EATON JW, 1980. Environmental contamination through residual trace metal dispersal from a derelict lead-zinc mine. Journal of Environmental
Quality, 9, 175-79.
KARK P, 1979. Clinical and neurochemical aspects of inorganic mercury intoxication. In Handbook of Clinical Neurology, Elsevier, Amsterdam, pp. 197.
MUNZUROGLU O, GECKIL H, 2002. Heavy metal effect on seed germination, root
elongation, coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus. Archives Environmental Contamination Toxicology, 43, 203-213.
OBROUCHEVA NV, BYSTROVA EI, IVANOV VB, ANUPOVA OV, SEREGIN IV,
1998. Root growth responses to lead in young maize seedling. Plant Soil, 200, 55-61.
OHKI K, 1984. Zinc nutrition related to critical deficiency and toxicity levels for
sorghum. Agronomy Journal, 76, 253-256. ROSA EVC, VALGAS C, SIERRA MMS, CORREA AXR, RADETSKI CM, 2003. Biomass growth, micronucleus induction and antioxidant stress enzyme responses in Vicia faba exposed to cadmium in solution. Environmental Toxicology and Chemistry, 22 (6), 645-649. SHAFIG M, IGBAL MZ, 2006. The Toxicity Effects of Heavy Metals on Germination and Seedling Growth of Cassia siamea Lamk. Journal of New Seeds, 7, 95-105. SHARMA P, DUBEY S, 2005. Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35-52.
SIROKA B, HUTTOVA J, TAMAS L, SIMONOVIEOVA M, MISTRIK I, 2004.
Effect of cadmium on hydrolytic enzymes in maize root and coleoptile. Biologia, Bratislava, 59, 513-517. STAYKOVA TA, IVANOVA EN, VELCHEVA IG, 2005. Cytogenetic effect of heavy metal and cyanide in contamined waters from the region of southwest Bulgaria. Journal of Cell and Molecular Biology, 4, 41-46.
STOYANOVA Z, DONCHEVA S, 2002. The effect of zinc supply and succinate
treatment on plant growth and mineral uptake in pea plant. Brazilian Journal of Plant Physiology, 14, 111-116. SUZUKI N, 2005. Alleviation by calcium of cadmium-induced root growth inhibition
in Arabidopsis seedlings. Plant Biotechnology, 22, 19-25. SYMEONIDIS L, KARATAGLIS S, 1992. Interactive effects of cadmium lead and zinc on root growth of two metal tolerant genotypes of Holcus lanatus L. BioMetals, 5, 173-178.
VERMA S, DUBEY RS, 2003. Lead toxicity induces lipid peroxidation and alters the
activites of antioxidant enzymes in growing rice plants. Plant Science, 164, 645¬655.
WEI QX, 2004. Mutagenic effects of chromium trioxide on root tip cells of Vicia faba.
Journal of Zhejiang University Science, 5, 1570-1576. WIERZBICKA M, OBIDZINSKA J, 1998. The effects of lead on seed imbibitions and germination in different plant species. Plant Science, 137, 155-171.
ZENGIN FK, MUNZUROGLU O, 2003. Effects of cadmium (Cd) and Mercury (Hg)
on the growth of root, shoot and leaf of bean (Phaseolus vulgaris L.) seedlings. Gazi University Journal of Science, 24 (1), 64-75.

Thank you for copying data from http://www.arastirmax.com