You are here

Sendromik olmayan işitme kaybının genetiği

The genetics of non-syndromic deafness

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Hearing loss is one of the most important defects that affects normal communication with more than 70 million people world-wide. Incidence of congenital hearing impairment is at least 1 in 1000 births, half of which can be attributed to genetic factors. Progress in the Human Genome Project thought that up to %1 of the approximately 30,000 human genes are necessary for hearing. In view of the complex structure of the inner ear and the mechanisms of normal hearing, it is not surprising that changes in hundreds of different genes can result in hearing impairment. Up to now, the chromosomal locations of about 110 genes for non-syndromic deafness have been mapped, and the genes of more than 50 loci have identified. In this review, we focus on the 20 genes causes of autosomal dominant and recessive inherited non-syndromic deafness, their biological roles and the affects on hearing loss.
Abstract (Original Language): 
İşitme kaybı, dünya çapında 70 milyonun üzerinde bireyi etkileyen en yaygın algılama bozukluklarından bir tanesidir. Konjenital işitme bozukluklarının insidansı en az 1000 doğumda bir olup bu vakaların yarısı genetik faktörlere bağlıdır. İnsan genom projesinde kaydedilen ilerlemeler neticesinde 30,000 civarında olduğu tahmin edilen insan genlerinin en az %1'inin işitme için gerekli olduğu düşünülmektedir. İç kulağın ve normal işitme süreçlerinin karmaşık yapısı göz önünde bulundurulduğunda yüzlerce farklı gende oluşabilecek değişimin işitme bozukluğu ile sonuçlanabileceği fikri şaşırtıcı değildir. Bugüne kadar, non-sendromik işitme kaybından sorumlu yaklaşık 110 adet genin kromozomal lokasyonu belirlenmiş ve elliden fazla lokusta bulunan gen tanımlanarak karakterize edilmiştir. Derleme niteliğindeki bu çalışmada, otozomal dominant ve resesif non-sendromik işitme kaybından sorumlu yaklaşık 20 gen ve bu genler tarafından ifade edilen protein ürünlerin biyolojik rolleri ile işitme kaybına olan etkilerine değinilecektir.
37-46

REFERENCES

References: 

1. Petit C, Levilliers J, Hardelin JP. Review: Molecular genetics ofhearing loss. Annu Rev. Genet. 2001,(35):589-646.
2. Willems PJ. Review:Genetic causes ofhearing loss. N Engl J Med 2000; (342):1101-28.
3. Hone SW, Smith RJH. Genetics ofhearing loss. SeminNeonatol 2001; 6:531-541.
4. Parving A, Newton V. Guidelines for description of inherited hearing loss. J Audiol Med 1995;
(4):2-5.
5. Fraser GR. The causes of profound deafness in chilhood. Baltimore: Johns Hopkins University Press, 1976:11-48.
6. MortonNE. Genetic epidemiology ofhearing impairement. AnnNY Acad Sci 1991; (630):16-
31.
7. Friedman TB, Griffith AJ. Review: Human nonsyndromic sensorineural deafness. Annu Rev Genomics Hum Genet 2003; (4):341-402.
8. Petit C. Genes responsible for human hereditary deafness: symphony of a thousand. Nat Genet 1996; (14):385-91.
9. Davis AC. The prevalence ofhearing impairement and reported hearing disability among adults in Great Britain. Int J Epidemiol 1989; (18):911-7.
10. Gorlin RJ, Toriello HV, Cohen MM. Jr., eds.: Hereditary hearing loss and its syndromes. Oxford UniversityPress, 1995:337-9.
11. Van Camp G, Willems PJ, Kunts H, Marres H, Smith RJ: Recent developments in genetic hearing impairment. J Audiol Med 1998; (7):120-33.
12. Van Camp G, Willems PJ, Smith RJH: Nonsyndromic hearing impairment: Unparalleled heterogeneity. Am J Hum Genet 1997; (60):758-
64.
13. Van Camp G, Smith R: Antwerp Hereditary Hearing Loss Homepage. http://dnalab- www.uia.ac.be/dnalab/hhh.
14. Alberts AS. Diaphanous-related Formin homology proteins. Curr. Biol. 2002; 12:R796.
15. Leon PE, Raventos H, Lynch E, Morrow J, King MC. The gene for an inherited form of deafness maps to chromosome 5q31. Proc Natl Acad Sci USA 1992; 89:5181-4.
16. Leon PE, Bonilla JA, Sanchez JR, Vanegas R, Villalobos M, Torres L, et al. Low frequency of hereditary deafness in man with childhood onset. Am J Hum Genet 1981; 33(2):209-14.
17. Lynch ED, Lee MK, Morrow JE, Welcsh PL, Leon PE, King MC. Non-syndromic deafness
S.D.Ü. Tıp pak.
Derg
. 2006:13(2)/ 37-46
Calapoğlu, Sendromik olmayan işitme kaybı
43
DFNA1
associate
d with mutation of a human homolog of the Drosophila gene diaphanous. Science 1997; 278:1315-8.
18. Petersen MB. Non-syndromic autosomal-dominant deafness. Clin Genet 2002; 62:1-13.
19. Ben-YosefT, Wattenhoffer M, Riazuddin S, Ahmed ZM, Scott HS, Kudoh J, et al. Novel mutations ofTMPRSS3 in four DFNB8/10 families segregating congenital autosomal recessive deafness. J Med Genet2001; 38(6):396-
400.
20. Masmoudi S, Antonarakis SE, Schwede T, Ghorbel AM, Gratri M, Pappasavas MP, et al. Novel missense mutations ofTMPRSS3 in two consanguineous Tunusian families with nonsyndromic autosomal recessive deafness. Hum Mutat2001; 18(2):101-8.
21. Scott HS, Kudoh J, Wattenhoffer M, Shibuya K, Berry A, Chrast R, et al. İnsertion ofbeta-satellite repeats identifies a transmembrane protease causing both congenital and childhood onset autosomal recessive deafness. Nat Genet 2001;
27:59-63.
22. Wattenhofer M, Di Iorio MV, Rabionet R, Dougherty L, Pampanos A, Schwede T, et al. Mutations in the TMPRSS3 gene are a rare cause of childhood nonsyndromic deafness in Caucasian patients. J Mol Med 2002; 80:124-31.
23. Grunder S, Muller A, Puppersberg JP. Developmental and cellular expression pattern of epithelial sodium channel alpha, beta and gamma subunits in the inner ear of the rat. Eur J Neurosci 2001; 13:641-8.
24. Guipponi M, Vuagniaux G, Wattenhoffer M, Shibuya K, Vazquez M, Dougherty L, et al. The transmembrane serine protease (TMPRSS3) mutated in deafness DFNB8/B10 activates the epithelial sodium channel (EnaC) in vitro. Hum Mol Genet2002; 11:2829-36.
25. McGuirt WT, Prasad SD, Griffith AJ, Kunst HP, Green GE, et al. Mutations in COL11A2 cause non-syndromic hearing loss (DFNA13). Nat Genet 1999; 23:413-9.
26. Thalmann I. Collagen of accessory structures of organ of corti. Connect Tissue Res 1993; 29:191¬201.
27. Legan PK, Rau A, Keen JN, Richardson GP. The mouse tectorins. Modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system. J Biol Chem 1997; 272:8791¬801.
28. Verhoeven K, Van Laer L, Kirschhofer K, Legan PK, Haghes DC, Schatteman I, et al. Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairement. NatGenet 1998; 19:60-2.
29. Naz S, Alasti F, Mowjoodi A, Riazuddin S, Sanati MH, Friedman TB, et al. Distinctive audiometric profile associatedwithDFNB21 alleles ofTECTA. J Med Genet 2003; 40: 360-3.
30. Manolis EN, Yandavi N, Nadol JB Jr, Eavey RD, McKenna M, Rosenbaum S, et al. A gene for nonsyndromic autosomal dominant progressive postlingual sensorineural hearing loss maps to chromosome 14q12-13. Hum Mol Genet 1996; 5(7):1047-50.
31. RobertsonNG, Lu L, Heller S, Merchant SN, Eavey RD, McKenna M, et al. Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction. Nat Genet 1998; 20(3):299-303.
32. Robertson NG, Skrovak AB, Yin Y, Weremowicz S, Johnson KR, Kovatch KA, et al. Mapping and characterization of a novel cochlear gene in human and in mouse: a positional candidate gene for a deafness disorder, DFNA9. Genomics 1997;
46(3):345-54.
33. Khetarpal U. Autosomal dominant sensorineural hearing loss. Further temporal bone findings. Arch Otolaryngol HeadNeck Surg 1993; 119:106-8.
34. Khetarpal U, Schuknecht HF, Gacek RR, Holmes LB. Autosomal dominant sensorineural hearing loss. Pedigrees, audiologic findings, and temporal bone findings in two kindreds. Arch Otolaryngol HeadNeck Surg 1991; 117:1032-42.
35. Kikuchi T, Kimura RS, Paul DL, Adams JC. Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol 1995;
191:101-18.
36. Goodenough DA, Goliger JA, Paul DL. Connexins, connexons, and intercellular communications. Annu Rev Biochem 1996; 65:475-502.
37. Bruzzone R, White TW, Paul DL. Connections with connexins: the molecular basis of direct intercellular signaling. EurJBiochem 1996; 238:1¬27.
38. Kelsell DP, Dunlop J, Stevens HP, LenchNJ, Liang JN, Parry G, et al. Connexin 26 mutations in hereditary non-syndromic senserineural deafness.Nature 1997; 387:80-3.
39. Zelante L, Gasparini P, Estivill X, Melchionda S, D'Agruma L, Govea N, et al. Connexin 26
S.D.Ü. Tıp pak.
Derg
. 2006:13(2)/ 37-46
44
Calapoğlu, Sendromik olmayan işitme kaybı
mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 1997; 6(9):1605-9.
40. Scott DA, Kraft ML, Carmi R, Ramesh A, Elbedour K, et al. Identification of mutations in the connexin 26 gene that cause autosomal recessive non-syndromic hearing loss. Hum Mutat 1998; 11(5):387-94.
41. Denoyelle F, Marlin S, Weil D, et al. Clinical features of the prevalent form of the childhood deafness, DFNB1, due to a connexin-26 gene defect: implications for genetic counselling. Lancet 1999;353:1298-303.
42. Estivill X, Fortina P, Surrey S, et al. Connexin-26 mutations in sporadict and inherited sensorineural deafness. Lancet 1998; 351:393-8.
43. Gasparini P, Rabionet R, Barbujani G, Melchionda S, Petersen M, Brondum-Nielsen K, et al. High carrier frequency of the 35delG deafness mutation in European populations. Genetic analysis consortium of GJB2 35delG. Eur J Hum Genet 2000; 8:19-23.
44. Green GE, Scott DA, McDonald JM, Woodworm GG, Sheffield VC, Smith RJ. Carrier rates in the midwestern United States for GJB2 mutations causing inherited deafness. JAMA 1999; 281:2211¬6.
45. Barış I, Kılınç MO, Tolun A. Frequency of the 35delG mutations in the connexin26 gene in Turkish hearing-impaired patients. Clin Genet 2001;60(6):452-5.
46. Tekin M, Akar N, Cin S, Blanton SH, Xia XJ, Liu XZ, et al. Connexin 26 (GJB2) mutations in the Turkish population: implications for the origin and high frequency of the 35delG mutations in Caucasians. Hum Genet2001; 108(5):385-9.
47. Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, El-Amraoui A, Marlin S, et al. KCNQ4, a novel potassium channel expressed in sensory outher hair cells, is mutated in dominant deafness. Cell 1999; 96(3):437-46.
48.Schulze-Bahr E, Wang Q, Wedekind H, Haverkamp W, Chen Q, Sun Y, et al. KCNE1 mutations cause Jervell and Lange-Nielsen syndrome. Nat Genet 1997; 17:267-8.
49.Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, et al. A novel mutation in the potasssium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 1997; 15:186-9.
50. Kharkovets T, Hardelin JP, Safieddine S, Schweizer M, El-Amraoui A, Petit C, et al. KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci USA 2000; 97:4333¬8.
51. Coucke PJ, Van Hauwe P, Kelley PM, Kunst H, Schatteman I, Van Velzen D, et al. Mutations in the KCNQ4 gene are responsible for autosomal dominant deafness in foue DFNA2 families. Hum Mol Genet 1999;8:1321-8.
52. Yasunaga S, Grati M, Cohen-Salmon M, El-Amraoui A, Mustapha M, Salem N, et al. A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form ofdeafness. Nat Genet 1999; 21(4):363-9.
53. Yasunaga S, Petit C. Physical map of the region surrounding the OTOFERLIN locus on chromosome 2p22-p23. Genomics 2000;
66(1):110-2.
54. Denoyelle F, Petit C. DFNB9. Adv Otorhinolaryngol 2002; 61:142-4.
55. Seller JR. Proteinprofiles: Myosin. London: OxfordUniv. Press, 1999.
56. Friedman TB, Sellers JR, Avraham KB. Unconvantional myosins and the genetics of hearing loss. Am J Med Genet 1999; 89:147-57.
57. Weil D, Küssel P, Blanchard S, Levy G, Levi-Acobas F, Drira M, et al. The autosomal recessive isolated deafness, DFNB2, andUsher 1B syndrome are allelic defects of the myosin-VIIA gene. Nat Genet 1997; 16:191-3.
58. Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, et al. Defective myosin VIIA gene responsible for Usher syndrome type IB. Nature 1995;374:60-1.
59. Liu XZ, Walsh J, Mburu P, et al. Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nat Genet 1997; 16:188-90.
60. Gorlin RJ, Toriello HV, Cohen MM Jr. Hereditary hearing loss and its syndromes. Oxford University Press, 1995:337-9.
61. Keats BJB, Corey DP. The Usher syndrome. Am J Med Genet 1999; 89:158-66.
62. Levy G, Levi-Acobas F, Blanchard S, et al. Myosin VIIA gene: heterogeneity of the mutations responsible for Usher syndrome type IB. Hum Mol Genet 1997; 6:111-6.
63. Kelley PM, Weston MD, Chen ZY, Orten DJ, Hasson T, Overbeck LD, et al. The genomic structure of the gene defective in Usher syndrome
S.D.Ü. Tıp pak.
Derg
. 2006:13(2)/ 37-46
Calapoğlu, Sendromik olmayan işitme kaybı
45
type IB (MYO7A). Genomics 1997; 40:73-9.
64. Anderson DW, Probst FJ, Belyantseva IA, Fridell RA, Beyer L, Martin DM, et al. The motor and tail regions of myosin XV are critical for normal structure and function of auditory and vestibular hair cells. Hum Mol Genet 2000; 9:1729-38.
65. Wang A, Liang Y, Fridell RA, Probst FJ, Wilcox ER, Touchman JW, et al. Association of unconvensional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 1998;280:1447-51.
66. Liang Y, Wang A, Belyantseva IA, Anderson DW, Probst FJ, Barber TD, et al. Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and Shaker2. Genomics 1999; 61:243-58.
67. Scott DA, Wang R, Kreman TM, Andrews M, McDonald JM, Bishop JR, et al. Functional deafness of the PDS gene product are associated with phenotypic variation in patients with Pendred syndrome and non-syndromic hearing loss (DFNB4). Hum Mol Genet 2000; 9:1709-15.
68. Abe S, Usami S, Hoover DM, et al. Fluctuating sensorineural hearing loss associated with enlarged vestibular aqueduct maps to 7q31, the region containing the pendred gene. Am J Med Genet 1999; 82:322-8.
69. Bogazzi F, Russo D, Raggi F, Ultimieri F, Berrettini S, Forli F, et al. Mutations in the SLC26A4 (pendrin) gene in patients with sensorineural deafness and enlarged vestibular aqueduct. J Endocrinol Invest 2004; 27(5):430-5.
70. Usami S, Abe S, Weston MD, Shinkawa H, Van Camp G, Kimberling WJ. Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS gene mutations. Hum Genet 1999; 104:188-92.
71. Coyle B, Reardon W, Herbrick JA, Tsui LC, Gausden E, Lee J, et al. Molecular analysis of the PDS gene in Pendred syndrome (sensorineural hearing loss and goitre). Hum Mol Genet 1998; 7:1105-12.
72. Li XC, Everett LA, Lalwani AK, Desmulch D, Friedman TB, Green ED, et al. A mutation in PDS causes non-syndromic recssive deafness. Nat Genet 1998; 18:215-7.
73. Baldwin CT, Weiss S, Farrer LA, De Stetano AL, Aldair R, Franklyn B, et al. Linkage of conjenital, recessive deafness (DFNB4) to chromosome 7q31 and evidence of genetic heterogeneity in the Middle Eastern Druze population. Hum Mol Genet 1995;
4:1637-42.
74. Masmoudi S, Charfedine I, Hmani M, Grati M, Ghorbel AM, Elgaied-Boulila A, et al. Pendred syndrome: phenotypic variability in two families carrying the same PDS missense mutation. Am J Med Genet 2000; 90:38-44.
75. Brunner HG, Van Bennekom A, Lambermon EM, Oei TL, Cremers WR, Weiringa B, et al. The gene for X-linked progressive mixed deafness with perilymphatic gusher during stapes surgery (DFN3) is linked to PGK. Hum Genet 1988;
80:337-40.
76. Bach I, Brunner HG, Beighton P, Ruvalcaba RH, Reardon W, Pembrey ME, et al. Microdeletions in patients with gusher-associated, X linked mixed deafness (DFN3). Am J Hum Genet 1992; 51:38¬44.
77. Cremers FP, Cremers CW, Ropers HH. The ins and outs ofX-linked deafness type 3. Adv Otorhinolaryngol 2000; 16:23-30.
78.De Kok YJ, Vossenaar ER, Cremers CW, Dahl N, Laporte J, Hu LJ, et al. Identification of a hot spot for micredeletions in patients with X-linked deafness type 3 (DFN3) 900 kb proximal to the DFN3 genePOU3F4. Hum Mol Genet 1996;
5:1229-35.
79. Avraham KB. DFNA15. Adv Otorhinolaryngol 2000;56:107-15.
80. Phippard D, Boyd Y, Reed V, Fisher G, Masson WK, Evans EP, et al. The sex-linked fidget mutation abolishes Brn4/Pou3f4 gene expression in the embryonic inner ear. Hum Mol Genet 2000;
9:79-85.
81. Vahava O, Morell R, Lynch ED, Weiss S, Kagan ME, Ahituv N, et al. Mutations in transcription factor POU4F3 associated with inhereted progressive hearing loss in humans. Science 1998; 279:1950-4.
82. Xiang M, Gao WQ, Hasson T, Shin JJ. Requirement for Brn-3c in maturation and survival, but not in fate determination of inner ear hair cells. Development 1998; 125:3935-46.
83. Van Camp G, Smith RJ. Maternally inherited hearing impairement. Clin Genet 2000; 57:409¬14.
84. Prezant TR, Agapian JV, Bohlman MC, Bu X, Oztas S, Qiu WQ, et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet 1993;4:289-94.
85. Estivill X, Govea N, Barcelo E, Badenas C,
S.D.Ü. Tıp pak.
Derg
. 2006:13(2)/ 37-46
46
Calapoğlu, Sendromik olmayan işitme kaybı
Romero E, Moral L, et al. Familial progressive sensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment of amnglycosides. Am J Hum Genet 1998; 62:27¬35.
86.Pandya A, Xia XJ, Erdenetungalag R, Amendola M, Landa B, Radnaabazar J, et al. Heterogenous point mutations in the mitochondrial tRNA Ser(UCN) precursor Coexisting with the A1555G mutations in the deaf students from Mongolia. Am J Hum Genet 1999; 65(6): 1803-6.

Thank you for copying data from http://www.arastirmax.com